[1]沈惠军,王浩,郑文智,等.基于易损性方法的高铁连续梁桥地震动最不利输入方向分析[J].东南大学学报(自然科学版),2019,49(5):926-932.[doi:10.3969/j.issn.1001-0505.2019.05.016]
 Shen Huijun,Wang Hao,Zheng Wenzhi,et al.Analysis of critical directions of earthquake input of high-speed railway continuous girder bridges based on fragility analysis method[J].Journal of Southeast University (Natural Science Edition),2019,49(5):926-932.[doi:10.3969/j.issn.1001-0505.2019.05.016]
点击复制

基于易损性方法的高铁连续梁桥地震动最不利输入方向分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第5期
页码:
926-932
栏目:
交通运输工程
出版日期:
2019-09-20

文章信息/Info

Title:
Analysis of critical directions of earthquake input of high-speed railway continuous girder bridges based on fragility analysis method
作者:
沈惠军王浩郑文智梁瑞军沙奔
东南大学混凝土及预应力混凝土结构教育部重点实验室, 南京 210096
Author(s):
Shen Huijun Wang Hao Zheng Wenzhi Liang Ruijun Sha Ben
Key Laboratory of Concrete and Prestressed Concrete of Ministry of Education, Southeast University, Nanjing 210096, China
关键词:
高铁桥梁 易损性分析方法 地震动输入方向 破坏状态 相对位移延性比
Keywords:
high-speed railway bridge fragility analysis method direction of earthquake input damage state relative displacement ductility ratio
分类号:
U442.55
DOI:
10.3969/j.issn.1001-0505.2019.05.016
摘要:
为确定高铁连续梁桥的地震动最不利输入方向,基于OpenSees软件建立了某典型三跨高铁连续梁桥的非线性动力分析模型,以相对位移延性比为桥墩的损伤指标,分析了中墩和边墩在不同截面方向处各破坏状态的相对位移延性比界限值.然后,建立了不同地震动输入方向下固定中墩和边墩在不同截面方向处的易损性曲线.最后,以易损性函数中位值为指标,确定了各地震动输入方向对应的最不利截面方向,并通过对比不同地震动输入方向在其最不利截面方向处的易损性函数中位值来确定地震动最不利输入方向.结果表明,同一地震动输入方向下各桥墩最不利截面方向的差值均在20°以内;边墩所有破坏状态最不利地震动输入方向与其相应的最不利截面方向均为90°,固定中墩各破坏状态对应的最不利地震动输入方向不一致.地震动输入方向在0°~50°范围内,固定中墩发生破坏的概率更大;地震动输入方向在60°~90°范围内,边墩发生破坏的概率更大.
Abstract:
To determine the critical directions of earthquake input of high-speed railway continuous girder bridges, the nonlinear dynamic analysis model of a typical three-span high-speed railway continuous girder bridge was established based on OpenSees. Taking the relative displacement ductility ratio(RDDR)as the damage index of the piers, the limit values of RDDR of the middle piers and the side piers at different damage states(DSs)in different section directions were analyzed. Then, the fragility curves of the piers with respect to section directions under different directions of earthquake input were obtained. Finally, the median value of the fragility function was selected as the index to determine the critical directions of the earthquake input and the corresponding section directions. The critical directions of the earthquake input can be determined by comparing the median value of the fragility function in the critical section directions at different directions of the earthquake input. The results show that the phase difference of the critical section directions of each pier under the same directions of the earthquake input is less than 20°. The critical directions of the earthquake input and the corresponding section directions for all DSs of the side piers are 90°, and the critical directions of the earthquake input for each DS of the fixed middle pier are different. When the direction of the earthquake input is in the range of 0° to 50°, the probability of damage at all levels of the side piers is higher; however, when the direction is in the range of 60° to 90°, that of the side piers is higher.

参考文献/References:

[1] Torbol M, Shinozuka M. Effect of the angle of seismic incidence on the fragility curves of bridges[J]. Earthquake Engineering & Structural Dynamics, 2012, 41(14): 2111-2124. DOI:10.1002/eqe.2197.
[2] 李小珍, 洪沁烨, 雷虎军, 等. 地震动输入方向对铁路部分斜拉桥地震响应的影响[J]. 桥梁建设, 2015, 45(1): 26-32.
  Li X Z, Hong Q Y, Lei H J, et al. Effect of input directions of seismic ground motion on seismic responses of a railway extradosed bridge[J]. Bridge Construction, 2015, 45(1): 26-32.(in Chinese)
[3] 王滔, 郭恩栋, 张丽娜, 等. 大跨斜拉桥地震动最不利输入方向分析[J]. 世界地震工程, 2007, 23(4): 107-111. DOI:10.3969/j.issn.1007-6069.2007.04.020.
Wang T, Guo E D, Zhang L N, et al. The critical direction of earthquake input for dynamic analysis of a long span cable-stayed bridge[J]. World Earthquake Engineering, 2007, 23(4): 107-111. DOI:10.3969/j.issn.1007-6069.2007.04.020. (in Chinese)
[4] 范立础, 聂利英, 李建中. 复杂结构地震波输入最不利方向标准问题[J]. 同济大学学报(自然科学版), 2003, 31(6): 631-636. DOI:10.3321/j.issn:0253-374X.2003.06.001.
Fan L C,Nie L Y, Li J Z. Discussion on standard of critical angle of seismic wave in seismic analysis of complicated structures[J]. Journal of Tongji University(Natural Science), 2003, 31(6): 631-636. DOI:10.3321/j.issn:0253-374X.2003.06.001. (in Chinese)
[5] Moschonas I F, Kappos A J. Assessment of concrete Bridges subjected to ground motion with an arbitrary angle of incidence: Static and dynamic approach[J]. Bulletin of Earthquake Engineering, 2013, 11(2): 581-605. DOI:10.1007/s10518-012-9395-2.
[6] Taskari O, Sextos A. Multi-angle, multi-damage fragility curves for seismic assessment of Bridges[J]. Earthquake Engineering & Structural Dynamics, 2015, 44(13): 2281-2301. DOI:10.1002/eqe.2584.
[7] Mackie K R, Cronin K J, Nielson B G. Response sensitivity of highway bridges to randomly oriented multi-component earthquake excitation[J]. Journal of Earthquake Engineering, 2011, 15(6): 850-876. DOI:10.1080/13632469.2010.551706.
[8] Smeby W, der Kiureghian A. Modal combination rules for multicomponent earthquake excitation[J]. Earthquake Engineering & Structural Dynamics, 1985, 13(1): 1-12. DOI:10.1002/eqe.4290130103.
[9] Lopez O A, Chopra A K, Hernandez J. Critical response of structures to multicomponent earthquake excitation[J]. Earthquake Engineering and Structural Dynamics, 2000, 29(12): 1759-1778.
[10] Lopez O A, Chopra A K, Hernández J. Evaluation of combination rules for maximum response calculation in multicomponent seismic analysis[J]. Earthquake Engineering & Structural Dynamics, 2001, 30(9): 1379-1398. DOI:10.1002/eqe.68.
[11] Choi E, DesRoches R, Nielson B. Seismic fragility of typical Bridges in moderate seismic zones[J]. Engineering Structures, 2004, 26(2): 187-199. DOI:10.1016/j.engstruct.2003.09.006.
[12] Wei B, Yang T H, Jiang L Z, et al. Effects of uncertain characteristic periods of ground motions on seismic vulnerabilities of a continuous track-bridge system of high-speed railway[J].Bulletin of Earthquake Engineering, 2018, 16(9): 3739-3769. DOI:10.1007/s10518-018-0326-8.
[13] 人民交通出版社. JTG/T B02-01—2008公路桥梁抗震设计细则[S]. 北京: 人民交通出版社, 2008
[14] Shinozuka M, Feng M Q, Lee J, et al. Statistical analysis of fragility curves[J]. Journal of Engineering Mechanics, 2000, 126(12): 1224-1231. DOI:10.1061/(asce)0733-9399(2000)126:12(1224).
[15] 李乔, 赵世春. 汶川大地震工程震害分析[M]. 成都: 西南交通大学出版社, 2008: 127-189.

备注/Memo

备注/Memo:
收稿日期: 2019-03-25.
作者简介: 沈惠军(1994—),男,硕士生;王浩(联系人),男,博士,教授,博士生导师,wanghao1980@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51578151)、国家“万人计划”青年拔尖人才资助项目(W03070080)、江苏省重点研发计划资助项目(BE2018120)、江苏省研究生科研与实践创新计划资助项目(KYCX18_0117).
引用本文: 沈惠军,王浩,郑文智,等.基于易损性方法的高铁连续梁桥地震动最不利输入方向分析[J].东南大学学报(自然科学版),2019,49(5):926-932. DOI:10.3969/j.issn.1001-0505.2019.05.016.
更新日期/Last Update: 2019-09-20