[1]潘皇宋,杜广印,王坤,等.无衬砌黄土隧道压力拱模型试验及数值模拟[J].东南大学学报(自然科学版),2019,49(5):949-955.[doi:10.3969/j.issn.1001-0505.2019.05.019]
 Pan Huangsong,Du Guangyin,Wang Kun,et al.Model test and numerical simulation on pressure arch of unlined loess tunnel[J].Journal of Southeast University (Natural Science Edition),2019,49(5):949-955.[doi:10.3969/j.issn.1001-0505.2019.05.019]
点击复制

无衬砌黄土隧道压力拱模型试验及数值模拟()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第5期
页码:
949-955
栏目:
交通运输工程
出版日期:
2019-09-20

文章信息/Info

Title:
Model test and numerical simulation on pressure arch of unlined loess tunnel
作者:
潘皇宋1杜广印1王坤2王磊2夏涵1覃达3
1东南大学岩土工程研究所, 南京 210096; 2中国人民解放军63926部队, 北京 100192; 3广西交通设计集团有限公司, 南宁 530029
Author(s):
Pan Huangsong1 Du Guangyin1 Wang Kun2 Wang Lei2 Xia Han1 Qin Da3
1 Institute of Geotechnical Engineering, Southeast University, Nanjing 210096, China
2 Troop No.63926 of Chinese People’s Liberation Army, Beijing 100192, China
3 Guangxi Communications Design Group Co., Ltd., Nann
关键词:
黄土 隧道 压力拱 模型试验 数值模拟
Keywords:
loess tunnel pressure arch model test numerical simulation
分类号:
U456
DOI:
10.3969/j.issn.1001-0505.2019.05.019
摘要:
为研究无衬砌黄土隧道压力拱分布及发展规律,开展不同荷载下直墙圆顶隧道开挖物理模型试验,采用微型土压力盒测试围岩变形稳定后的内部应力分布,并利用数值模拟进行对比分析.试验及数值模拟表明,距洞壁约1.5倍洞径范围内,无衬砌黄土隧道围岩存在应力明显增大的区域.当荷载超过一定限值后,洞壁一定范围内的土体应力不再随荷载的增大而增大,出现明显的压力拱边界,黄土隧道围岩表现出一定的压力拱特性.荷载在20 kPa以下压力拱范围和边界几乎不变,隧道围岩可以自稳;荷载大于20 kPa后,随着荷载增大,压力拱边界及范围逐渐扩大,直墙附近压力拱范围扩展最快,拱肩次之,底板最慢.各级荷载条件下,直墙底部附近压力拱范围最大,拱顶最小,形成了最利于受力的拱脚扩大式压力拱.
Abstract:
To study the distribution and the development law of the pressure arch in unlined loess tunnel, the physical model tests on the excavation of a segmental shape tunnel were carried out under different loads. The miniature soil pressure sensors were used to test the internal stress distribution of surrounding soil after the deformation stability, and the numerical simulations were carried out for comparative analysis. The results of the model tests and numerical simulation show that, within the range of 1.5 times of the tunnel diameter from the tunnel wall, there are areas where the stress increases significantly in surrounding soil of the unlined loess tunnel. When the load exceeds a certain limit, the soil stress in a certain range of the tunnel wall no longer increases with the increase of the load. The obvious pressure arch boundary appears; and the surrounding soil of the loess tunnel exhibits certain pressure arch characteristics. The range and the boundary of the pressure arch are almost unchanged when the load is less than 20 kPa, and the surrounding soil can be self-stable. However, when the load is more than 20 kPa, the boundary and range of the pressure arch gradually expand with the increase of the load. The pressure arch near the straight wall expands to be the fastest, followed by the shoulder, and the bottom is the slowest. Under different load conditions, the pressure arch range near the bottom of the straight wall is the largest, and the crown is the smallest, forming the foot expansion pressure arch that is the most conducive to bearing capacity.

参考文献/References:

[1] 李健. 大断面黄土隧道初支作用机理及变形控制技术研究[D]. 北京: 北京交通大学, 2012.
  Li J. Initial supporting mechanism and deformation controlling technology of loess tunnel with large section[D]. Beijing: Beijing Jiaotong University, 2012.(in Chinese)
[2] Ji X B, Ni P P, Barla M, et al. Earth pressure on shield excavation face for pipe jacking considering arching effect[J].Tunnelling and Underground Space Technology, 2018, 72: 17-27. DOI:10.1016/j.tust.2017.11.010.
[3] Sun X H, Miao L C, Lin H S, et al. Soil arch effect analysis of shield tunnel in dry sandy ground[J].International Journal of Geomechanics, 2018, 18(6): 04018057. DOI:10.1061/(asce)gm.1943-5622.0001135.
[4] 武军, 廖少明, 时振昊. 考虑土拱效应的盾构隧道开挖面稳定性[J]. 同济大学学报(自然科学版), 2015, 43(2): 213-220.DOI:10.11908/j.issn.0253-374x.2015.02.008.
Wu J, Liao S M, Shi Z H. Workface stability of shield tunnel considering arching effect[J]. Journal of Tongji University(Natural Science), 2015, 43(2): 213-220.DOI:10.11908/j.issn.0253-374x.2015.02.008. (in Chinese)
[5] 林庆涛. 空间土拱效应原理的研究与应用[D]. 北京: 北方工业大学, 2016.
  Lin Q T. The research on the principle and application of the spatial soil arching effects[D]. Beijing: North China University of Technology, 2016.(in Chinese)
[6] Li C L. Developing an analytical method to study vertical stress due to soil arching during tunnel construction[J].Geotechnical and Geological Engineering, 2016, 34(4): 1247-1255. DOI:10.1007/s10706-016-0030-x.
[7] Lin X T, Liu Y, Kang X, et al. Numerical simulation on the development of soil arching induced by EPBS tunnelling[M]//Springer Series in Geomechanics and Geoengineering. Singapore: Springer Singapore, 2018: 575-582. DOI:10.1007/978-981-10-6632-0_44.
[8] Chen C N, Huang W Y, Tseng C T. Stress redistribution and ground arch development during tunneling[J].Tunnelling and Underground Space Technology, 2011, 26(1): 228-235. DOI:10.1016/j.tust.2010.06.012.
[9] Lee C J, Wu B R, Chen H T, et al. Tunnel stability and arching effects during tunneling in soft clayey soil[J].Tunnelling and Underground Space Technology, 2006, 21(2): 119-132. DOI:10.1016/j.tust.2005.06.003.
[10] 徐伟忠, 刘树佳, 廖少明. 盾构埋深对软土土拱效应影响分析[J]. 地下空间与工程学报, 2017, 13(Z1): 65-69.
  Xu W Z, Liu S J, Liao S M. Analysis on the influence of shield depth on soft soil arching effect[J]. Chinese Journal of Underground Space and Engineering, 2017, 13(Z1): 65-69.(in Chinese)
[11] Kong X X, Liu Q S, Zhang Q B, et al. A method to estimate the pressure arch formation above underground excavation in rock mass[J].Tunnelling and Underground Space Technology, 2018, 71: 382-390. DOI:10.1016/j.tust.2017.09.004.
[12] 娄培杰. 考虑土拱效应的浅埋隧道松动土压力计算方法[J]. 现代隧道技术, 2017, 54(4): 56-62. DOI:10.13807/j.cnki.mtt.2017.04.007.
Lou P J. Calculation method for loosening earth pressure of a shallow-buried tunnel considering the soil arch effect[J]. Modern Tunnelling Technology, 2017, 54(4): 56-62. DOI:10.13807/j.cnki.mtt.2017.04.007. (in Chinese)
[13] Guo P J, Zhou S H. Arch in granular materials as a free surface problem[J].International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(9): 1048-1065. DOI:10.1002/nag.1137.
[14] 路德春, 曹胜涛, 张波, 等. 隧道开挖围岩土压力拱效应分析[J]. 地下空间与工程学报, 2015, 11(6): 1421-1430, 1436.
  Lu D C, Cao S T, Zhang B, et al. Soil arching effect during tunnel excavation[J]. Chinese Journal of Underground Space and Engineering, 2015, 11(6): 1421-1430, 1436.(in Chinese)
[15] Wu J, Liao S M, Liu M B. An analytical solution for the arching effect induced by ground loss of tunneling in sand[J].Tunnelling and Underground Space Technology, 2019, 83: 175-186. DOI:10.1016/j.tust.2018.09.025.
[16] 叶飞, 毛家骅, 刘燕鹏, 等. 软弱破碎隧道围岩动态压力拱效应模型试验[J]. 中国公路学报, 2015, 28(10): 76-82, 104. DOI:10.19721/j.cnki.1001-7372.2015.10.010.
Ye F, Mao J H, Liu Y P, et al. Model test on effect of dynamic pressure arch of tunnel in soft broken surrounding rock[J]. China Journal of Highway and Transport, 2015, 28(10): 76-82, 104. DOI:10.19721/j.cnki.1001-7372.2015.10.010. (in Chinese)
[17] 赵学勐, 王璐. 黄土拱作用机理剖析[J]. 岩土力学, 2009, 30(S2): 9-12. DOI:10.16285/j.rsm.2009.s2.092.
Zhao X M, Wang L. Analysis of mechanism of loess arching[J]. Rock and Soil Mechanics, 2009, 30(S2): 9-12. DOI:10.16285/j.rsm.2009.s2.092. (in Chinese)
[18] 李盛, 王起才, 马莉, 等. 黄土地区高填土明洞土拱效应及土压力减载计算[J]. 岩石力学与工程学报, 2014, 33(5): 1055-1062. DOI:10.13722/j.cnki.jrme.2014.05.021.
Li S, Wang Q C, Ma L, et al. Earth pressure and soil arch effect for high fill open cut tunnel in loess area under different load reduction schemes[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(5): 1055-1062. DOI:10.13722/j.cnki.jrme.2014.05.021. (in Chinese)
[19] 扈世民. 黄土隧道围岩压力拱效应分析[J]. 铁道学报, 2014, 36(3): 94-99. DOI:10.3969/j.issn.1001-8360.2014.03.015.
Hu S M. Analysis on pressure-arch effect of surrounding rock in loess tunnel[J]. Journal of the China Railway Society, 2014, 36(3): 94-99. DOI:10.3969/j.issn.1001-8360.2014.03.015. (in Chinese)
[20] 傅鹤林, 张加兵, 陈伟, 等. 深埋圆形毛洞隧道围岩压力拱范围研究[J]. 湖南大学学报(自然科学版), 2018, 45(7): 117-124. DOI:10.16339/j.cnki.hdxbzkb.2018.07.015.
Fu H L, Zhang J B, Chen W, et al. Research on pressure arch range of surrounding rock in deep unlined circular tunnel[J]. Journal of Hunan University(Natural Sciences), 2018, 45(7): 117-124. DOI:10.16339/j.cnki.hdxbzkb.2018.07.015. (in Chinese)
[21] 王文谦. 大跨度隧道围岩压力拱效应研究[D]. 北京: 北京交通大学, 2018.
  Wang W Q. Study on pressure arch effect of a large crosssection tunnel[D]. Beijing: Beijing Jiaotong University, 2018.(in Chinese)

备注/Memo

备注/Memo:
收稿日期: 2019-03-30.
作者简介: 潘皇宋(1988—),男,博士生;杜广印(联系人),男,博士,副教授,博士生导师,guangyin@seu.edu.cn.
引用本文: 潘皇宋,杜广印,王坤,等.无衬砌黄土隧道压力拱模型试验及数值模拟[J].东南大学学报(自然科学版),2019,49(5):949-955. DOI:10.3969/j.issn.1001-0505.2019.05.019.
更新日期/Last Update: 2019-09-20