# [1]潘皇宋,杜广印,王坤,等.无衬砌黄土隧道压力拱模型试验及数值模拟[J].东南大学学报(自然科学版),2019,49(5):949-955.[doi:10.3969/j.issn.1001-0505.2019.05.019] 　Pan Huangsong,Du Guangyin,Wang Kun,et al.Model test and numerical simulation on pressure arch of unlined loess tunnel[J].Journal of Southeast University (Natural Science Edition),2019,49(5):949-955.[doi:10.3969/j.issn.1001-0505.2019.05.019] 点击复制 无衬砌黄土隧道压力拱模型试验及数值模拟() 分享到： var jiathis_config = { data_track_clickback: true };

49

2019年第5期

949-955

2019-09-20

## 文章信息/Info

Title:
Model test and numerical simulation on pressure arch of unlined loess tunnel

1东南大学岩土工程研究所, 南京 210096; 2中国人民解放军63926部队, 北京 100192; 3广西交通设计集团有限公司, 南宁 530029
Author(s):
1 Institute of Geotechnical Engineering, Southeast University, Nanjing 210096, China
2 Troop No.63926 of Chinese People’s Liberation Army, Beijing 100192, China
3 Guangxi Communications Design Group Co., Ltd., Nann

Keywords:

U456
DOI:
10.3969/j.issn.1001-0505.2019.05.019

Abstract:
To study the distribution and the development law of the pressure arch in unlined loess tunnel, the physical model tests on the excavation of a segmental shape tunnel were carried out under different loads. The miniature soil pressure sensors were used to test the internal stress distribution of surrounding soil after the deformation stability, and the numerical simulations were carried out for comparative analysis. The results of the model tests and numerical simulation show that, within the range of 1.5 times of the tunnel diameter from the tunnel wall, there are areas where the stress increases significantly in surrounding soil of the unlined loess tunnel. When the load exceeds a certain limit, the soil stress in a certain range of the tunnel wall no longer increases with the increase of the load. The obvious pressure arch boundary appears; and the surrounding soil of the loess tunnel exhibits certain pressure arch characteristics. The range and the boundary of the pressure arch are almost unchanged when the load is less than 20 kPa, and the surrounding soil can be self-stable. However, when the load is more than 20 kPa, the boundary and range of the pressure arch gradually expand with the increase of the load. The pressure arch near the straight wall expands to be the fastest, followed by the shoulder, and the bottom is the slowest. Under different load conditions, the pressure arch range near the bottom of the straight wall is the largest, and the crown is the smallest, forming the foot expansion pressure arch that is the most conducive to bearing capacity.

## 参考文献/References:

[1] 李健. 大断面黄土隧道初支作用机理及变形控制技术研究[D]. 北京: 北京交通大学, 2012.
Li J. Initial supporting mechanism and deformation controlling technology of loess tunnel with large section[D]. Beijing: Beijing Jiaotong University, 2012.(in Chinese)
[2] Ji X B, Ni P P, Barla M, et al. Earth pressure on shield excavation face for pipe jacking considering arching effect[J].Tunnelling and Underground Space Technology, 2018, 72: 17-27. DOI:10.1016/j.tust.2017.11.010.
[3] Sun X H, Miao L C, Lin H S, et al. Soil arch effect analysis of shield tunnel in dry sandy ground[J].International Journal of Geomechanics, 2018, 18(6): 04018057. DOI:10.1061/(asce)gm.1943-5622.0001135.
[4] 武军, 廖少明, 时振昊. 考虑土拱效应的盾构隧道开挖面稳定性[J]. 同济大学学报(自然科学版), 2015, 43(2): 213-220.DOI:10.11908/j.issn.0253-374x.2015.02.008.
Wu J, Liao S M, Shi Z H. Workface stability of shield tunnel considering arching effect[J]. Journal of Tongji University(Natural Science), 2015, 43(2): 213-220.DOI:10.11908/j.issn.0253-374x.2015.02.008. (in Chinese)
[5] 林庆涛. 空间土拱效应原理的研究与应用[D]. 北京: 北方工业大学, 2016.
Lin Q T. The research on the principle and application of the spatial soil arching effects[D]. Beijing: North China University of Technology, 2016.(in Chinese)
[6] Li C L. Developing an analytical method to study vertical stress due to soil arching during tunnel construction[J].Geotechnical and Geological Engineering, 2016, 34(4): 1247-1255. DOI:10.1007/s10706-016-0030-x.
[7] Lin X T, Liu Y, Kang X, et al. Numerical simulation on the development of soil arching induced by EPBS tunnelling[M]//Springer Series in Geomechanics and Geoengineering. Singapore: Springer Singapore, 2018: 575-582. DOI:10.1007/978-981-10-6632-0_44.
[8] Chen C N, Huang W Y, Tseng C T. Stress redistribution and ground arch development during tunneling[J].Tunnelling and Underground Space Technology, 2011, 26(1): 228-235. DOI:10.1016/j.tust.2010.06.012.
[9] Lee C J, Wu B R, Chen H T, et al. Tunnel stability and arching effects during tunneling in soft clayey soil[J].Tunnelling and Underground Space Technology, 2006, 21(2): 119-132. DOI:10.1016/j.tust.2005.06.003.
[10] 徐伟忠, 刘树佳, 廖少明. 盾构埋深对软土土拱效应影响分析[J]. 地下空间与工程学报, 2017, 13(Z1): 65-69.
Xu W Z, Liu S J, Liao S M. Analysis on the influence of shield depth on soft soil arching effect[J]. Chinese Journal of Underground Space and Engineering, 2017, 13(Z1): 65-69.(in Chinese)
[11] Kong X X, Liu Q S, Zhang Q B, et al. A method to estimate the pressure arch formation above underground excavation in rock mass[J].Tunnelling and Underground Space Technology, 2018, 71: 382-390. DOI:10.1016/j.tust.2017.09.004.
[12] 娄培杰. 考虑土拱效应的浅埋隧道松动土压力计算方法[J]. 现代隧道技术, 2017, 54(4): 56-62. DOI:10.13807/j.cnki.mtt.2017.04.007.
Lou P J. Calculation method for loosening earth pressure of a shallow-buried tunnel considering the soil arch effect[J]. Modern Tunnelling Technology, 2017, 54(4): 56-62. DOI:10.13807/j.cnki.mtt.2017.04.007. (in Chinese)
[13] Guo P J, Zhou S H. Arch in granular materials as a free surface problem[J].International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(9): 1048-1065. DOI:10.1002/nag.1137.
[14] 路德春, 曹胜涛, 张波, 等. 隧道开挖围岩土压力拱效应分析[J]. 地下空间与工程学报, 2015, 11(6): 1421-1430, 1436.
Lu D C, Cao S T, Zhang B, et al. Soil arching effect during tunnel excavation[J]. Chinese Journal of Underground Space and Engineering, 2015, 11(6): 1421-1430, 1436.(in Chinese)
[15] Wu J, Liao S M, Liu M B. An analytical solution for the arching effect induced by ground loss of tunneling in sand[J].Tunnelling and Underground Space Technology, 2019, 83: 175-186. DOI:10.1016/j.tust.2018.09.025.
[16] 叶飞, 毛家骅, 刘燕鹏, 等. 软弱破碎隧道围岩动态压力拱效应模型试验[J]. 中国公路学报, 2015, 28(10): 76-82, 104. DOI:10.19721/j.cnki.1001-7372.2015.10.010.
Ye F, Mao J H, Liu Y P, et al. Model test on effect of dynamic pressure arch of tunnel in soft broken surrounding rock[J]. China Journal of Highway and Transport, 2015, 28(10): 76-82, 104. DOI:10.19721/j.cnki.1001-7372.2015.10.010. (in Chinese)
[17] 赵学勐, 王璐. 黄土拱作用机理剖析[J]. 岩土力学, 2009, 30(S2): 9-12. DOI:10.16285/j.rsm.2009.s2.092.
Zhao X M, Wang L. Analysis of mechanism of loess arching[J]. Rock and Soil Mechanics, 2009, 30(S2): 9-12. DOI:10.16285/j.rsm.2009.s2.092. (in Chinese)
[18] 李盛, 王起才, 马莉, 等. 黄土地区高填土明洞土拱效应及土压力减载计算[J]. 岩石力学与工程学报, 2014, 33(5): 1055-1062. DOI:10.13722/j.cnki.jrme.2014.05.021.
Li S, Wang Q C, Ma L, et al. Earth pressure and soil arch effect for high fill open cut tunnel in loess area under different load reduction schemes[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(5): 1055-1062. DOI:10.13722/j.cnki.jrme.2014.05.021. (in Chinese)
[19] 扈世民. 黄土隧道围岩压力拱效应分析[J]. 铁道学报, 2014, 36(3): 94-99. DOI:10.3969/j.issn.1001-8360.2014.03.015.
Hu S M. Analysis on pressure-arch effect of surrounding rock in loess tunnel[J]. Journal of the China Railway Society, 2014, 36(3): 94-99. DOI:10.3969/j.issn.1001-8360.2014.03.015. (in Chinese)
[20] 傅鹤林, 张加兵, 陈伟, 等. 深埋圆形毛洞隧道围岩压力拱范围研究[J]. 湖南大学学报(自然科学版), 2018, 45(7): 117-124. DOI:10.16339/j.cnki.hdxbzkb.2018.07.015.
Fu H L, Zhang J B, Chen W, et al. Research on pressure arch range of surrounding rock in deep unlined circular tunnel[J]. Journal of Hunan University(Natural Sciences), 2018, 45(7): 117-124. DOI:10.16339/j.cnki.hdxbzkb.2018.07.015. (in Chinese)
[21] 王文谦. 大跨度隧道围岩压力拱效应研究[D]. 北京: 北京交通大学, 2018.
Wang W Q. Study on pressure arch effect of a large crosssection tunnel[D]. Beijing: Beijing Jiaotong University, 2018.(in Chinese)