[1]王钰轲,黎冰.扭剪作用下饱和软黏土轴向纯压循环变形及模量软化特性试验研究[J].东南大学学报(自然科学版),2019,49(5):981-988.[doi:10.3969/j.issn.1001-0505.2019.05.023]
 Wang Yuke,Li Bing.Experimental study on one-way cyclic deformation and softening behavior of saturated soft clay under principal stress rotation[J].Journal of Southeast University (Natural Science Edition),2019,49(5):981-988.[doi:10.3969/j.issn.1001-0505.2019.05.023]
点击复制

扭剪作用下饱和软黏土轴向纯压循环变形及模量软化特性试验研究()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第5期
页码:
981-988
栏目:
土木工程
出版日期:
2019-09-20

文章信息/Info

Title:
Experimental study on one-way cyclic deformation and softening behavior of saturated soft clay under principal stress rotation
作者:
王钰轲1黎冰2
1郑州大学水利与环境学院, 郑州 450001; 2东南大学土木工程学院, 南京 210096
Author(s):
Wang Yuke1 Li Bing2
1College of Water Conservancy and Environmental Engineering, Zhengzhou University, Zhengzhou 450001, China
2College of Civil Engineering, Southeast University, Nanjing 210096, China
关键词:
原状软黏土 变形 软化特性 主应力轴旋转
Keywords:
natural soft clay deformation softening characteristic principal stress rotation
分类号:
TU411
DOI:
10.3969/j.issn.1001-0505.2019.05.023
摘要:
为了研究主应力轴连续旋转下软黏土的轴向纯压循环变形特性,基于空心圆柱扭剪仪(HCA)模拟了交通等类似荷载作用下的圆形应力路径,开展了不同围压和不同循环应力比(CSR)下循环次数达5 000次的主应力轴连续旋转试验.研究了饱和软黏土试样的应变累积、应力-应变滞回曲线、模量软化等特性,得到了不同循环应力比和不同围压条件下主应力轴连续旋转引起的变形规律.试验结果表明:随着循环次数的不断增加,土体的应力-应变滞回曲线有明显的差异,土体剪切模量不断降低.相同有效围压时,随着循环应力比的增大,土体的软化指数逐渐减小;相同循环应力比时,随着有效围压的增大,试样受到的侧向约束增大,土体的软化指数减小.
Abstract:
To study one-way cyclic deformation behavior of soft marine clay under principal stress rotation, the circle stress path under traffic and similar loads was simulated based on hollow cylinder apparatus(HCA), and a series of continuous principal stress rotation tests with cycles up to 5 000 times under different confining pressures and different cyclic stress ratios(CSRs)were carried out. The characteristics of strain accumulation, stress-strain hysteretic loop and modulus softening of saturated soft clay samples were studied, and the deformation law caused by continuous principal stress rotation under different CSRs and confining pressures was obtained. Experimental results show that with the increase of the number of cycles, the shear stress-strain hysteresis curves of soil are obviously different, and the shear modulus of soil decreases. With the same effective confining pressure, the softening index of soil decreases gradually with the increase of CSR. With the same CSR, the lateral constraint on the samples increases and the softening index of soil decreases with the increase of effective confining pressure.

参考文献/References:

[1] 蒋红光,边学成,徐翔,等.列车移动荷载下高速铁路板式轨道路基动力性态的全比尺物理模型试验[J].岩土工程学报,2014,36(2):354-362.DOI:10.11779/CJGE201402013.
Jiang H G,Bian X C,Xu X,et al.Full-scale model tests on dynamic performances of ballastless high-speed railways under moving train loads[J].Chinese Journal of Geotechnical Engineering,2014,36(2):354-362.DOI:10.11779/CJGE201402013. (in Chinese)
[2] Wang Y K,Gao Y F,Guo L,et al.Influence of intermediate principal stress and principal stress direction on drained behavior of natural soft clay[J].International Journal of Geomechanics,2018,18(1):04017128.DOI:10.1061/(asce)gm.1943-5622.0001042.
[3] 熊焕,郭林,蔡袁强.交通荷载应力路径下砂土地基变形特性研究[J].岩土工程学报,2016,38(4):662-669.DOI:10.11779/CJGE201604010.
Xiong H,Guo L,Cai Y Q.Deformation behaviors of sandy subgrade soil under traffic load-induced stress path[J].Chinese Journal of Geotechnical Engineering,2016,38(4):662-669.DOI:10.11779/CJGE2016 04010. (in Chinese)
[4] Kirkgard M M,Lade P V.Anisotropic three-dimensional behavior of a normally consolidated clay[J].Canadian Geotechnical Journal,1993,30(5):848-858.DOI:10.1139/t93-075.
[5] Anantanasakul P,Yamamuro J A,Lade P V.Three-dimensional drained behavior of normally consolidated anisotropic kaolin clay[J].Soils and Foundations,2012,52(1):146-159.DOI:10.1016/j.sandf.2012.01.014.
[6] Callisto L,Rampello S.Shear strength and small-strain stiffness of a natural clay under general stress conditions[J].Géotechnique,2002,52(8):547-560.DOI:10.1680/geot.2002.52.8.547.
[7] Lade P V,Kirkgard M M.Effects of stress rotation and changes of b-values on cross-anisotropic behavior of natural,K0-consolidated soft clay[J].Soils and Foundations,2000,40(6):93-105.DOI:10.3208/sandf.40.6_93.
[8] 郭林,王钰轲,王军,等.中主应力与大主应力方向角对软黏土排水变形特性影响[J].岩土力学,2016,37(5):1380-1387.DOI:10.16285/j.rsm.2016.05.021.
Guo L,Wang Y K,Wang J,et al.Influence of intermediate principal stress and major principal stress direction on the drainage-induced deformation of soft clay[J].Rock and Soil Mechanics,2016,37(5):1380-1387.DOI:10.16285/j.rsm.2016.05.021. (in Chinese)
[9] Wang Y K,Wu D,Qiu Y,et al.Experimental investigation on cyclic deformation behavior of soft marine clay involved principal stress rotation[J].Marine Georesources & Geotechnology,2017,35(4):571-577.DOI:10.1080/1064119X.2016.1194922.
[10] Tong Z X,Zhang J M,Yu Y L,et al.Drained deformation behavior of anisotropic sands during cyclic rotation of principal stress axes[J].Journal of Geotechnical and Geoenvironmental Engineering,2010,136(11):1509-1518.DOI:10.1061/(ASCE)GT.1943-5606.0000378.
[11] Yang Z X,Li X S,Yang J.Undrained anisotropy and rotational shear in granular soil[J].Géotechnique,2007,57(4):371-384.DOI:10.1680/geot.2007.57.4.371.
[12] 周建,郑鸿镔,温晓贵,等.考虑中主应力系数影响的主应力轴旋转下原状软黏土变形研究[J].浙江大学学报(工学版),2011,45(12):2134-2141.DOI:10.3785/j.issn.1008-973X.2011.12.011.
Zhou J,Zheng H B,Wen X G,et al.Deformation of intact soft clay under principal stress rotation with effect of intermediate principal stress[J].Journal of Zhejiang University(Engineering Science),2011,45(12):2134-2141.DOI:10.3785/j.issn.1008-973X.2011.12.011. (in Chinese)
[13] 严佳佳,周建,龚晓南,等.主应力轴纯旋转条件下原状黏土变形特性研究[J].岩土工程学报,2014,36(3):474-481.DOI:10.11779/CJGE201403010.
Yan J J,Zhou J,Gong X N,et al.Deformation behavior of intact clay under pure principal stress rotation[J].Chinese Journal of Geotechnical Engineering,2014,36(3):474-481.DOI:10.11779/CJGE201403010. (in Chinese)
[14] 肖军华,许世芹,韦凯,等.主应力轴旋转对地铁荷载作用下 软黏土累积变形的影响[J].岩土力学,2013,34(10):2938-2944,3027.DOI:10.16285/j.rsm.2013.10.019.
Xiao J H,Xu S Q,Wei K,et al.Influences of rotation of principal stress axis on accumulative deformation of soft clay under subway cyclic loading[J].Rock and Soil Mechanics,2013,34(10):2938-2944,3027.DOI:10.16285/j.rsm.2013.10.019. (in Chinese)
[15] 钱建固,王永刚,张甲峰,等.交通动载下饱和软黏土累计变形的不排水循环扭剪试验[J].岩土工程学报,2013,35(10):1790-1798.
  Qian J G,Wang Y G,Zhang J F,et al.Undrained cyclic torsion shear tests on permanent deformation responses of soft saturated clay to traffic loadings[J].Chinese Journal of Geotechnical Engineering,2013,35(10):1790-1798.(in Chinese)
[16] Wang Y K,Gao Y F,Li B,et al.Influence of initial state and intermediate principal stress on undrained behavior of soft clay during pure principal stress rotation[J].Acta Geotechnica,2018:1-23.DOI:10.1007/s11440-018-0735-5.
[17] Wang Y K,Gao Y F,Cai Y Q,et al.Effect of initial state and intermediate principal stress on noncoaxiality of soft clay-involved cyclic principal stress rotation[J].International Journal of Geomechanics,2018,18(7):04018081.DOI:10.1061/(ASCE)GM.1943-5622.0001214.
[18] Wang Y K,Gao Y F,Guo L,et al.Cyclic response of natural soft marine clay under principal stress rotation as induced by wave loads[J].Ocean Engineering,2017,129:191-202.DOI:10.1016/j.oceaneng.2016.11.031.
[19] Hight D W,Gens A,Symes M J.The development of a new hollow cylinder apparatus for investigating the effects of principal stress rotation in soils [J].Géotechnique,1983,33(4):355-383.DOI:10.1680/geot.1983.33.4.355.

相似文献/References:

[1]徐澄,袁必果.劲性钢筋混凝土梁短期刚度的试验研究[J].东南大学学报(自然科学版),1991,21(6):77.[doi:10.3969/j.issn.1001-0505.1991.06.012]
 Xu Cheng,Yuan Biguo.An Experimental Study of Short-Term Stiffness of Steel-Reinforced Concrete Flexural Members[J].Journal of Southeast University (Natural Science Edition),1991,21(5):77.[doi:10.3969/j.issn.1001-0505.1991.06.012]
[2]张恒平,猪股俊司,青木(彳散)彦.混凝土斜拉桥用悬臂法施工的徐变分析[J].东南大学学报(自然科学版),1988,18(1):105.[doi:10.3969/j.issn.1001-0505.1988.01.012]
 Zhang Hengping (Departement of Civil Engineering) Shunji Inomata Tetsuhiko Aoki (Aizhi Institute of Technology,Japan).Creep Analysis for Cable Stayed Concrete Bridge during Cantilever-Construction[J].Journal of Southeast University (Natural Science Edition),1988,18(5):105.[doi:10.3969/j.issn.1001-0505.1988.01.012]
[3]徐晓霖,唐九如.钢筋轻骨料混凝土框架节点的试验研究[J].东南大学学报(自然科学版),1988,18(6):72.[doi:10.3969/j.issn.1001-0505.1988.06.010]
 Xu Xiaolin Tang Jiuru (Department of Civil Engineering).Experimental Study of Reinforced Lightweight Aggregate Concrete Beam-Column Joints[J].Journal of Southeast University (Natural Science Edition),1988,18(5):72.[doi:10.3969/j.issn.1001-0505.1988.06.010]
[4]丁大钧.关于钢筋砼受弯构件裂缝及变形的计算[J].东南大学学报(自然科学版),1964,6(5):55.[doi:10.3969/j.issn.1001-0505.1964.05.004]
 Ding Dah-Jung.On the calculation of crack width and deflection of R, C. beams[J].Journal of Southeast University (Natural Science Edition),1964,6(5):55.[doi:10.3969/j.issn.1001-0505.1964.05.004]
[5]周佩德,谢晶.矢量图文变形的权值拖曳算法研究[J].东南大学学报(自然科学版),1996,26(2):93.[doi:10.3969/j.issn.1001-0505.1996.02.015]
 Zhou Peide,Xie Jing.The Research on Weight-Dragging Algorithms for Deforming Vector Graphics and Text[J].Journal of Southeast University (Natural Science Edition),1996,26(5):93.[doi:10.3969/j.issn.1001-0505.1996.02.015]

备注/Memo

备注/Memo:
收稿日期: 2018-09-08.
作者简介: 王钰轲(1989—),男,博士,讲师; 黎冰(联系人),男,博士,副教授, lbershui@seu.edu.cn.
基金项目: 国家重点研发计划资助项目(2017YFC1501204)、国家自然科学基金资助项目(51578145).
引用本文: 王钰轲,黎冰.扭剪作用下饱和软黏土轴向纯压循环变形及模量软化特性试验研究[J].东南大学学报(自然科学版),2019,49(5):981-988. DOI:10.3969/j.issn.1001-0505.2019.05.023.
更新日期/Last Update: 2019-09-20