[1]刘晓燕,蔡国军,刘路路,等.南京河漫滩淤泥质粉质黏土导热系数特性及预测模型[J].东南大学学报(自然科学版),2019,49(5):989-995.[doi:10.3969/j.issn.1001-0505.2019.05.024]
 Liu Xiaoyan,Cai Guojun,Liu Lulu,et al.Thermal conductivity and prediction model of mucky silty clay in Nanjing floodplain[J].Journal of Southeast University (Natural Science Edition),2019,49(5):989-995.[doi:10.3969/j.issn.1001-0505.2019.05.024]
点击复制

南京河漫滩淤泥质粉质黏土导热系数特性及预测模型()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第5期
页码:
989-995
栏目:
土木工程
出版日期:
2019-09-20

文章信息/Info

Title:
Thermal conductivity and prediction model of mucky silty clay in Nanjing floodplain
作者:
刘晓燕1蔡国军1刘路路1刘松玉1戴济群2
1 东南大学岩土工程研究所, 南京 211189; 2 南京水利科学研究院, 南京 210029
Author(s):
Liu Xiaoyan1 Cai Guojun1 Liu Lulu1 Liu Songyu1 Dai Jiqun2
1 Institute of Geotechnical Engineering, Southeast University, Nanjing 211189, China
2 Nanjing Hydraulic Research Institute, Nanjing 210029, China
关键词:
南京河漫滩 淤泥质粉质黏土 热探针试验 导热系数 预测模型
Keywords:
Nanjing floodplain mucky silty clay thermal probe test thermal conductivity prediction model
分类号:
TU411.2
DOI:
10.3969/j.issn.1001-0505.2019.05.024
摘要:
为了研究南京河漫滩淤泥质粉质黏土的热学特性,采用非稳态热探针研究了不同含水率、干密度、饱和度和孔隙率对淤泥质粉质黏土导热系数的影响.基于串-并联热传导混合模型,通过分析淤泥质粉质黏土导热系数与含水率、干密度、饱和度以及孔隙率的关系,建立了高含水率下南京河漫滩淤泥质粉质黏土导热系数修正的预测模型.试验结果表明:淤泥质粉质黏土的临界含水率可达25%;导热系数随干密度的增加呈线性增大,随饱和度的增加呈指数关系递增,随孔隙率的增加呈指数关系递减;与3种热传导模型及南京其他场地实测数据相比,所提出的高含水率下淤泥质粉质黏土预测模型准确性更高.
Abstract:
To investigate the thermal properties of mucky silty clay in Nanjing floodplain, the effects of different water contents, dry densities, and degrees of saturation and porosities on the thermal conductivity of mucky silty clay were studied by an unsteady thermal probe. Based on the mixed serial-parallel thermal conduction model, a prediction model for the modification of thermal conductivity of mucky silty clay in Nanjing floodplain with high water content was established by analyzing the relationship between the thermal conductivity of mucky silty clay with the water content, the dry density, the degree of saturation, and the porosity. The results indicate that the critical water content of mucky silty clay in floodplain of Nanjing can reach 25%. The thermal conductivity increases linearly with the increase of the dry density, increases exponentially with the increase of the saturation while decreases exponentially with the increase of the porosity. Compared with the three heat conduction models and the measured data of other sites in Nanjing, the proposed prediction model for mucky silty clay with high water content has better accuracy.

参考文献/References:

[1] 张涛,蔡国军,刘松玉.南京地区典型土体热学特性与预测模型[J].东南大学学报(自然科学版),2014,44(3):655-661.DOI:10.3969/j.issn.1001-0505.2014.03.036.
Zhang T,Cai G J,Liu S Y.Thermal properties and prediction model of typical soils in Nanjing area[J].Journal of Southeast University(Natural Science Edition),2014,44(3):655-661.DOI:10.3969/j.issn.1001-0505.2014.03.036. (in Chinese)
[2] 苏天明,刘彤,李晓昭,等.南京地区土体热物理性质测试与分析[J].岩石力学与工程学报,2006,25(6):1278-1283.DOI:10.3321/j.issn:1000-6915.2006.06.029.
Su T M,Liu T,Li X Z,et al.Test and analysis of thermal properties of soil in Nanjing district[J].Chinese Journal of Rock Mechanics and Engineering,2006,25(6):1278-1283.DOI:10.3321/j.issn:1000-6915.2006.06.029. (in Chinese)
[3] Abu-Hamdeh N,Reeder R C.Soil thermal conductivity:Effects of density,moisture,salt concentration,and organic matter[J].Soil Science Society of America Journal,2000,64(4):1285-1290.DOI:10.2136/sssaj2000.6441285x.
[4] 邓友生,何平,周成林.含盐土导热系数的试验研究[J].冰川冻土,2004,26(3):319-323.DOI:10.3969/j.issn.1000-0240.2004.03.013.
Deng Y S,He P,Zhou C L.An experimental research on the thermal conductivity coefficient of saline soil[J].Journal of Glaciology and Geocryology,2004,26(3):319-323.DOI:10.3969/j.issn.1000-0240.2004.03.013. (in Chinese)
[5] 张楠,夏胜全,侯新宇,等.土热传导系数及模型的研究现状和展望[J].岩土力学,2016,37(6):1550-1562.DOI:10.16285/j.rsm.2016.06.004.
Zhang N,Xia S Q,Hou X Y,et al.Review on soil thermal conductivity and prediction model[J].Rock and Soil Mechanics,2016,37(6):1550-1562.DOI:10.16285/j.rsm.2016.06.004. (in Chinese)
[6] Tong F G,Jing L R,Zimmerman R W.An effective thermal conductivity model of geological porous media for coupled thermo-hydro-mechanical systems with multiphase flow[J].International Journal of Rock Mechanics and Mining Sciences,2009,46(8):1358-1369.DOI:10.1016/j.ijrmms.2009.04.010.
[7] 徐婕,朱合华,闫治国.淤泥质黏土火灾高温下导热系数的试验研究[J].岩土工程学报,2012,34(11):2108-2113.
  Xu J,Zhu H H,Yan Z G.Experimental studies on coefficient of thermal conductivity of silty clay[J].Chinese Journal of Geotechnical Engineering,2012,34(11):2108-2113.(in Chinese)
[8] Johansen O.Thermal conductivity of soils[D].Trondheim,Norway:University of Trondheim,1975.
[9] 原喜忠,李宁,赵秀云,等.非饱和(冻)土导热系数预估模型研究[J].岩土力学,2010,31(9):2689-2694.DOI:10.3969/j.issn.1000-7598.2010.09.001.
Yuan X Z,Li N,Zhao X Y,et al.Study of thermal conductivity model for unsaturated unfrozen and frozen soils[J].Rock and Soil Mechanics,2010,31(9):2689-2694.DOI:10.3969/j.issn.1000-7598.2010.09.001. (in Chinese)
[10] Côté J,Konrad J M.A generalized thermal conductivity model for soils and construction materials[J].Canadian Geotechnical Journal,2005,42(2):443-458.DOI:10.1139/t04-106.
[11] 陈宝,许邹,姚聪琳,等.上海(5)1层粉质黏土的热传导特性[J].同济大学学报(自然科学版),2012,40(6):843-848.DOI:10.3969/j.issn.0253-374x.2012.06.007.
Chen B,Xu Z,Yao C L,et al.Thermal conductivity of shanghai (5)1 silty clay[J].Journal of Tongji University(Natural Science),2012,40(6):843-848.DOI:10.3969/j.issn.0253-374x.2012.06.007. (in Chinese)
[12] 陈善雄,陈守义.砂土热导率的实验研究[J].岩土工程学报,1994,16(5):47-53.
  Chen S X,Chen S Y.Experimental study on thermal conductivity of sands[J].Chinese Journal of Geotechnical Engineering,1994,16(5):47-53.(in Chinese)
[13] 张涛,刘松玉,张楠,等.土体热传导性能及其热导率模型研究[J].建筑材料学报,2019,22(1):72-80.DOI:10.3969/j.issn.1007-9629.2019.01.011.
Zhang T,Liu S Y,Zhang N,et al.Research of soil thermal conduction properties and its thermal conductivity model[J].Journal of Building Materials,2019,22(1):72-80.DOI:10.3969/j.issn.1007-9629.2019.01.011. (in Chinese)
[14] Kersten M S.Laboratory research for the determination of the thermal properties of soils [J].Journal of Neurophysiology,1948,45(4):667-697.DOI:10.1007/BF01870908.
[15] Salomone L A,Kovacs W D.Thermal resistivity of soils[J].Journal of Geotechnical Engineering,1984,110(3):375-389.DOI:10.1061/(asce)0733-9410(1984)110:3(375).
[16] Gangadhara Rao M V B B,Singh D N.A generalized relationship to estimate thermal resistivity of soils[J].Canadian Geotechnical Journal,1999,36(4):767-773.DOI:10.1139/cgj-36-4-767.
[17] Barry-Macaulay D,Bouazza A,Singh R M,et al.Thermal conductivity of soils and rocks from the Melbourne(Australia)region[J].Engineering Geology,2013,164:131-138.DOI:10.1016/j.enggeo.2013.06.014.
[18] Cai G J,Zhang T,Puppala A J,et al.Thermal characterization and prediction model of typical soils in Nanjing area of China[J].Engineering Geology,2015,191:23-30.DOI:10.1016/j.enggeo.2015.03.005.
[19] Bhattacharjee B,Krishnamoorthy S.Permeable porosity and thermal conductivity of construction materials[J].Journal of Materials in Civil Engineering,2004,16(4):322-330.DOI:10.1061/(asce)0899-1561(2004)16:4(322).
[20] Lu S,Ren T S,Gong Y S,et al.An improved model for predicting soil thermal conductivity from water content at room temperature[J].Soil Science Society of America Journal,2007,71(1):8.DOI:10.2136/sssaj2006.0041.
[21] Lu Y,Yu W B,Hu D,et al.Experimental study on the thermal conductivity of aeolian sand from the Tibetan Plateau[J].Cold Regions Science and Technology,2018,146:1-8.DOI:10.1016/j.coldregions.2017.11.006.

备注/Memo

备注/Memo:
收稿日期: 2019-03-29.
作者简介: 刘晓燕(1990—),女,博士生;蔡国军(联系人),男,博士,教授,博士生导师,focuscai@163.com.
基金项目: 国家重点研发计划资助项目(2016YFC0800200)、国家自然科学基金资助项目(41672294,41877231).
引用本文: 刘晓燕,蔡国军,刘路路,等.南京河漫滩淤泥质粉质黏土导热系数特性及预测模型[J].东南大学学报(自然科学版),2019,49(5):989-995. DOI:10.3969/j.issn.1001-0505.2019.05.024.
更新日期/Last Update: 2019-09-20