[1]耿艳芬,郑鑫,柯兴.基于一维二维耦合模型的衢州城市洪涝演进分析[J].东南大学学报(自然科学版),2019,49(5):1005-1010.[doi:10.3969/j.issn.1001-0505.2019.05.026]
 Geng Yanfen,Zheng Xin,Ke Xing.Urban flood process analysis with a 1D/2D coupling model: A case study of Quzhou city[J].Journal of Southeast University (Natural Science Edition),2019,49(5):1005-1010.[doi:10.3969/j.issn.1001-0505.2019.05.026]
点击复制

基于一维二维耦合模型的衢州城市洪涝演进分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第5期
页码:
1005-1010
栏目:
土木工程
出版日期:
2019-09-20

文章信息/Info

Title:
Urban flood process analysis with a 1D/2D coupling model: A case study of Quzhou city
作者:
耿艳芬郑鑫柯兴
东南大学交通学院, 南京 210096
Author(s):
Geng Yanfen Zheng Xin Ke Xing
School of Transportation, Southeast University, Nanjing 210096, China
关键词:
耦合模型 二维浅水方程 城市洪涝 演进过程
Keywords:
coupling model 2D shallow water equation urban flood evolution process
分类号:
TU998.4
DOI:
10.3969/j.issn.1001-0505.2019.05.026
摘要:
为准确模拟城市洪涝演进,建立一维河网和二维水深平均浅水模型.采用Preissmann隐式差分格式离散圣维南方程,并用三级联解法求解一维河网水系;采用四边形和三角形混合的非结构网格有限体积法离散二维浅水方程,并用Roe格式的近似黎曼解法求解界面通量.模型采用衢州市2011年的实测洪涝淹没事件进行验证,验证结果显示模型具有较好的模拟效果.用该模型模拟4种不同重现期降雨量下的衢州市城区淹没情况,结果显示城区极端淹没深度超过3 m,但超过95%区域淹没深度小于0.5 m.此外,不同深度的淹没区域演进过程在同一降雨条件下呈现不同趋势.该模型能运用于具有复杂地形的沿江河城市洪涝数值模拟,亦能为城市防洪减灾研究和城市防洪规划提供精确数据.
Abstract:
To accurately simulate urban flood evolution, a 1D river network and 2D depth-averaged shallow water coupling model with porosity is established. The Preissmann implicit scheme is used to discretize the Saint-Venant equation and the 1D river network is solved by a three-step method. The unstructured-grid finite volume method with quadrilateral and triangle grids is employed to discretize the 2D shallow water equation. The interface flux is solved by the modified Roe-type approximate Riemann method. The model was validated by a historical flood event in Quzhou city in 2011. The computational results are fitted well with measurement results. The coupling model was used to simulate the submergence of Quzhou city under four different rainfall conditions. The results show that the inundation depths of more than 95% of the inundation area are less than 0.5 m while the extreme inundation depth is more than 3 m. In addition, the evolution processes of different submerged depths show different trends under the same rainfall conditions. This study can provide accurate data for urban flood process research and urban flood management. In addition, the hydraulic model can be applied to other cities with complex topography.

参考文献/References:

[1] Robins N S, Finch J W. Groundwater flood or groundwater-induced flood?[J].Quarterly Journal of Engineering Geology and Hydrogeology, 2012, 45(1): 119-122. DOI:10.1144/1470-9236/10-040.
[2] He B S, Huang X L, Ma M H, et al. Analysis of flash flood disaster characteristics in China from 2011 to 2015[J].Natural Hazards, 2018, 90(1): 407-420. DOI:10.1007/s11069-017-3052-7.
[3] 张建云, 王银堂, 贺瑞敏, 等. 中国城市洪涝问题及成因分析[J]. 水科学进展, 2016, 27(4): 485-491. DOI:10.14042/j.cnki.32.1309.2016.04.001.
Zhang J Y, Wang Y T, He R M, et al. Discussion on the urban flood and waterlogging and causes analysis in China[J]. Advances in Water Science, 2016, 27(4): 485-491. DOI:10.14042/j.cnki.32.1309.2016.04.001. (in Chinese)
[4] Cook A, Merwade V. Effect of topographic data, geometric configuration and modeling approach on flood inundation mapping[J].Journal of Hydrology, 2009, 377(1/2): 131-142. DOI:10.1016/j.jhydrol.2009.08.015.
[5] Quiroga V M, Kure S, Udo K, et al. Application of 2D numerical simulation for the analysis of the February 2014 Bolivian Amazonia flood: Application of the new HEC-RAS version 5[J].RIBAGUA—Revista Iberoamericana del Agua,2016, 3(1): 25-33. DOI:10.1016 /j.riba.2015. 12.001.
[6] Vojinovic Z, Tutulic D. On the use of 1D and coupled 1D-2D modelling approaches for assessment of flood damage in urban areas [J].Urban Water Journal,2009,6(3): 183-199. DOI:10.1080/15730620802566877.
[7] Niroshinie M A C, Nihei Y, Ohtsuki K, et al. Flood inundation analysis and mitigation with a coupled 1D-2D hydraulic model: A case study in Kochi, Japan[J]. Journal of Disaster Research, 2015, 10(6): 1099-1109. DOI:10.20965/jdr.2015.p1099.
[8] 陈文龙, 宋利祥, 邢领航, 等. 一维-二维耦合的防洪保护区洪水演进数学模型[J]. 水科学进展, 2014, 25(6): 848-855. DOI:10.14042/j.cnki.32.1309.2014.06.012.
Chen W L, Song L X, Xing L H, et al. A 1D-2D coupled mathematical model for numerical simulating of flood routine in flood protected zone[J]. Advances in Water Science, 2014, 25(6): 848-855. DOI:10.14042/j.cnki.32.1309.2014.06.012. (in Chinese)
[9] 卢程伟, 周建中, 江焱生, 等. 复杂边界条件多洪源防洪保护区洪水风险分析[J]. 水科学进展, 2018, 29(4): 514-522. DOI:10.14042/j.cnki.32.1309.2018.04.007.
Lu C W, Zhou J Z, Jiang Y S, et al. Risk analysis of flood protected zone with complex boundary conditions and multi-flood sources[J]. Advances in Water Science, 2018, 29(4): 514-522. DOI:10.14042/j.cnki.32.1309.2018.04.007. (in Chinese)
[10] 王志力,耿艳芬,陆永军. 河流水沙数值模拟技术与应用[M].南京:河海大学出版社, 2013:22-24.
  Wang Z L,Geng Y F,Lu Y J.Application of simulation technology for water flux and sediment[M].Nanjing:Hohai University Press, 2013:22-24.(in Chinese)
[11] 张二骏,张东生, 李挺. 河网非恒定流的三级联合解法[J]. 华东水利学院学报, 1982(1): 1-13.
[12] 耿艳芬, 王志力, 陆永军, 等. 基于无结构网格单元中心有限体积法的二维对流扩散方程离散[J]. 计算物理, 2009, 26(1): 17-26. DOI:10.3969/j.issn.1001-246X.2009.01.003.
Geng Y F, Wang Z L, Lu Y J, et al. Discretization of two-dimensional advection-diffusion equation with unstructured cell center finite volume method[J]. Chinese Journal of Computational Physics, 2009, 26(1): 17-26. DOI:10.3969/j.issn.1001-246X.2009.01.003. (in Chinese)
[13] Geng Y F, Wang Z L. Two-dimensional shallow water equations with porosity for urban flood modeling [C]//Proceedings of 2013 IAHR Congress. Chengdu, China, 2013:419.
[14] 梅超, 刘家宏, 王浩, 等. 城市设计暴雨研究综述[J]. 科学通报, 2017, 62(33): 3873-3884. DOI: 10.1360/N972016-01295.
Mei C, Liu J H, Wang H, et al. Review on urban design rainstorm[J]. Chinese Science Bulletin, 2017, 62(33): 3873-3884. DOI:10.1360/N972016-01295. (in Chinese)

备注/Memo

备注/Memo:
收稿日期: 2019-01-27.
作者简介: 耿艳芬(1978—),女,博士,副教授,yfgeng@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51979040).
引用本文: 耿艳芬,郑鑫,柯兴.基于一维二维耦合模型的衢州城市洪涝演进分析[J].东南大学学报(自然科学版),2019,49(5):1005-1010. DOI:10.3969/j.issn.1001-0505.2019.05.026.
更新日期/Last Update: 2019-09-20