# [1]耿艳芬,郑鑫,柯兴.基于一维二维耦合模型的衢州城市洪涝演进分析[J].东南大学学报(自然科学版),2019,49(5):1005-1010.[doi:10.3969/j.issn.1001-0505.2019.05.026] 　Geng Yanfen,Zheng Xin,Ke Xing.Urban flood process analysis with a 1D/2D coupling model: A case study of Quzhou city[J].Journal of Southeast University (Natural Science Edition),2019,49(5):1005-1010.[doi:10.3969/j.issn.1001-0505.2019.05.026] 点击复制 基于一维二维耦合模型的衢州城市洪涝演进分析() 分享到： var jiathis_config = { data_track_clickback: true };

49

2019年第5期

1005-1010

2019-09-20

## 文章信息/Info

Title:
Urban flood process analysis with a 1D/2D coupling model: A case study of Quzhou city

Author(s):
School of Transportation, Southeast University, Nanjing 210096, China

Keywords:

TU998.4
DOI:
10.3969/j.issn.1001-0505.2019.05.026

Abstract:
To accurately simulate urban flood evolution, a 1D river network and 2D depth-averaged shallow water coupling model with porosity is established. The Preissmann implicit scheme is used to discretize the Saint-Venant equation and the 1D river network is solved by a three-step method. The unstructured-grid finite volume method with quadrilateral and triangle grids is employed to discretize the 2D shallow water equation. The interface flux is solved by the modified Roe-type approximate Riemann method. The model was validated by a historical flood event in Quzhou city in 2011. The computational results are fitted well with measurement results. The coupling model was used to simulate the submergence of Quzhou city under four different rainfall conditions. The results show that the inundation depths of more than 95% of the inundation area are less than 0.5 m while the extreme inundation depth is more than 3 m. In addition, the evolution processes of different submerged depths show different trends under the same rainfall conditions. This study can provide accurate data for urban flood process research and urban flood management. In addition, the hydraulic model can be applied to other cities with complex topography.

## 参考文献/References:

[1] Robins N S, Finch J W. Groundwater flood or groundwater-induced flood?[J].Quarterly Journal of Engineering Geology and Hydrogeology, 2012, 45(1): 119-122. DOI:10.1144/1470-9236/10-040.
[2] He B S, Huang X L, Ma M H, et al. Analysis of flash flood disaster characteristics in China from 2011 to 2015[J].Natural Hazards, 2018, 90(1): 407-420. DOI:10.1007/s11069-017-3052-7.
[3] 张建云, 王银堂, 贺瑞敏, 等. 中国城市洪涝问题及成因分析[J]. 水科学进展, 2016, 27(4): 485-491. DOI:10.14042/j.cnki.32.1309.2016.04.001.
Zhang J Y, Wang Y T, He R M, et al. Discussion on the urban flood and waterlogging and causes analysis in China[J]. Advances in Water Science, 2016, 27(4): 485-491. DOI:10.14042/j.cnki.32.1309.2016.04.001. (in Chinese)
[4] Cook A, Merwade V. Effect of topographic data, geometric configuration and modeling approach on flood inundation mapping[J].Journal of Hydrology, 2009, 377(1/2): 131-142. DOI:10.1016/j.jhydrol.2009.08.015.
[5] Quiroga V M, Kure S, Udo K, et al. Application of 2D numerical simulation for the analysis of the February 2014 Bolivian Amazonia flood: Application of the new HEC-RAS version 5[J].RIBAGUA—Revista Iberoamericana del Agua,2016, 3(1): 25-33. DOI:10.1016 /j.riba.2015. 12.001.
[6] Vojinovic Z, Tutulic D. On the use of 1D and coupled 1D-2D modelling approaches for assessment of flood damage in urban areas [J].Urban Water Journal,2009,6(3): 183-199. DOI:10.1080/15730620802566877.
[7] Niroshinie M A C, Nihei Y, Ohtsuki K, et al. Flood inundation analysis and mitigation with a coupled 1D-2D hydraulic model: A case study in Kochi, Japan[J]. Journal of Disaster Research, 2015, 10(6): 1099-1109. DOI:10.20965/jdr.2015.p1099.
[8] 陈文龙, 宋利祥, 邢领航, 等. 一维-二维耦合的防洪保护区洪水演进数学模型[J]. 水科学进展, 2014, 25(6): 848-855. DOI:10.14042/j.cnki.32.1309.2014.06.012.
Chen W L, Song L X, Xing L H, et al. A 1D-2D coupled mathematical model for numerical simulating of flood routine in flood protected zone[J]. Advances in Water Science, 2014, 25(6): 848-855. DOI:10.14042/j.cnki.32.1309.2014.06.012. (in Chinese)
[9] 卢程伟, 周建中, 江焱生, 等. 复杂边界条件多洪源防洪保护区洪水风险分析[J]. 水科学进展, 2018, 29(4): 514-522. DOI:10.14042/j.cnki.32.1309.2018.04.007.
Lu C W, Zhou J Z, Jiang Y S, et al. Risk analysis of flood protected zone with complex boundary conditions and multi-flood sources[J]. Advances in Water Science, 2018, 29(4): 514-522. DOI:10.14042/j.cnki.32.1309.2018.04.007. (in Chinese)
[10] 王志力,耿艳芬,陆永军. 河流水沙数值模拟技术与应用[M].南京:河海大学出版社, 2013:22-24.
Wang Z L,Geng Y F,Lu Y J.Application of simulation technology for water flux and sediment[M].Nanjing:Hohai University Press, 2013:22-24.(in Chinese)
[11] 张二骏,张东生, 李挺. 河网非恒定流的三级联合解法[J]. 华东水利学院学报, 1982(1): 1-13.
[12] 耿艳芬, 王志力, 陆永军, 等. 基于无结构网格单元中心有限体积法的二维对流扩散方程离散[J]. 计算物理, 2009, 26(1): 17-26. DOI:10.3969/j.issn.1001-246X.2009.01.003.
Geng Y F, Wang Z L, Lu Y J, et al. Discretization of two-dimensional advection-diffusion equation with unstructured cell center finite volume method[J]. Chinese Journal of Computational Physics, 2009, 26(1): 17-26. DOI:10.3969/j.issn.1001-246X.2009.01.003. (in Chinese)
[13] Geng Y F, Wang Z L. Two-dimensional shallow water equations with porosity for urban flood modeling [C]//Proceedings of 2013 IAHR Congress. Chengdu, China, 2013:419.
[14] 梅超, 刘家宏, 王浩, 等. 城市设计暴雨研究综述[J]. 科学通报, 2017, 62(33): 3873-3884. DOI: 10.1360/N972016-01295.
Mei C, Liu J H, Wang H, et al. Review on urban design rainstorm[J]. Chinese Science Bulletin, 2017, 62(33): 3873-3884. DOI:10.1360/N972016-01295. (in Chinese)