[1]于仲洋,张鸿儒.交叉换乘地铁车站地震特性及其设计方法[J].东南大学学报(自然科学版),2019,49(5):1011-1018.[doi:10.3969/j.issn.1001-0505.2019.05.027]
 Yu Zhongyang,Zhang Hongru.Seismic characteristics and design method for cross transfer subway stations[J].Journal of Southeast University (Natural Science Edition),2019,49(5):1011-1018.[doi:10.3969/j.issn.1001-0505.2019.05.027]
点击复制

交叉换乘地铁车站地震特性及其设计方法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第5期
页码:
1011-1018
栏目:
土木工程
出版日期:
2019-09-20

文章信息/Info

Title:
Seismic characteristics and design method for cross transfer subway stations
作者:
于仲洋张鸿儒
北京交通大学土木建筑工程学院, 北京 100044
Author(s):
Yu Zhongyang Zhang Hongru
School of civil engineering, Beijing Jiaotong University, Beijing 100044, China
关键词:
交叉换乘地铁车站 交叉部分影响范围 动力时程法 薄板弯曲
Keywords:
cross transfer subway station influence range of the intersection part dynamic time-history method thin plate bending
分类号:
TU92;TU435
DOI:
10.3969/j.issn.1001-0505.2019.05.027
摘要:
为了研究交叉换乘地铁车站结构的地震特性,提出一种适用于该类型地铁车站的抗震设计方法.利用动力有限元数值模拟,对比三维交叉换乘地铁车站及相对应的二维标准车站结构内力,给出交叉换乘地铁车站中交叉部分的影响范围.与此同时,基于薄板弯曲理论,提出探讨交叉换乘地铁车站中交叉部分影响范围的简化理论模型,通过将交叉部分影响范围问题转换为双向板短边约束影响范围问题并求解2类双向板理论解析解,验证数值模型中交叉部分影响范围. 并在此基础上提出了分步抗震设计方法,即对影响范围外的结构沿用传统设计、影响范围内的结构采用改进方法进行设计.结果表明:在常规中硬场地中,单层交叉换乘地铁车站的交叉部分存在影响范围阈值,且影响范围为3倍结构层间高度或1.5倍结构宽度.该结论证明了所提交叉换乘地铁车站结构抗震分步设计方法的可行性.
Abstract:
To study the seismic characteristics of the cross transfer subway station, a new design method for such structural type was put forward. Based on the dynamic finite element numerical simulation, the influence range of the intersection part of the cross transfer subway station was given by comparing the internal forces of the 3D cross transfer subway station and the corresponding 2D standard station. At the same time, based on the theory of thin plate bending, simplified theoretical models were proposed to discuss the influence range of the intersection part of the cross transfer subway station. By converting the influence range problem of the intersection part into that of the short side constraint of the two-way plate and solving the theory solutions of two two-way plates, the influence range of the intersection part in numerical models was verified. Meanwhile, a new seismic stepwise design method was proposed. The structure outside the influence area was designed with the traditional method, and the structure inside the influence area was designed with the improved method. The results show that the influence range threshold exists in the intersection part of single-storey cross transfer subway station, and the influence range is 3 times inter-layer height of the structure and 1.5 times width of the structure in middle hard soil sites. The conclusion proves the feasibilities of the seismic stepwise design method for the cross transfer subway station.

参考文献/References:

[1] Uenishi K, Sakurai S. Characteristic of the vertical seismic waves associated with the 1995 Hyogo-ken Nanbu(Kobe), Japan earthquake estimated from the failure of the Daikai Underground Station[J]. Earthquake Engineering & Structural Dynamics, 2000, 29(6):813-821. DOI:10.1002/(SICI)1096-9845(200006)29:6〈813::AID-EQE939〉3.0.CO;2-E.
[2] Huo H, Bobet A, Fernández G, et al. Load transfer mechanisms between underground structure and surrounding ground:Evaluation of the failure of the Daikai Station[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(12):1522-1533. DOI:10.1061/(ASCE)1090-0241(2005)131:12(1522).
[3] Hashash Y M A, Hook J J, Schmidt B, et al. Seismic design and analysis of underground structures[J].Tunnelling and Underground Space Technology, 2001, 16(4):247-293. DOI:10.1016/S0886-7798(01)00051-7.
[4] Hamada H, Kitahara M. Earthquake observation and BIE analysis on dynamic behavior of rock cavern[C]//Proceedings of the Fifth International Conference on Numerical Methods in Geomechanics. Nagoya, Japan, 1985:1525-1532.
[5] Wang W L, Wang T T, Su J J, et al. Assessment of damage in mountain tunnels due to the Taiwan Chi-Chi Earthquake[J]. Tunnelling and Underground Space Technology, 2001, 16(3):133-150. DOI:10.1016/S0886-7798(01)00047-5.
[6] Iwatate T, Lino T, Takeuchi, M, et al. Investigation and shaking table tests of subway structures of the Hyogoken-Nanbu Earthquake[C]//World Tunnel Congress 98 on Tunnels and Metropolises. Sao Paulo, Brazil, 1998:567-573.
[7] Chen G X, Chen S, Zuo X, et al. Shaking-table tests and numerical simulations on a subway structure in soft soil[J].Soil Dynamics and Earthquake Engineering, 2015, 76:13-28. DOI:10.1016/j.soildyn.2014.12.012.
[8] 左熹, 杨树才, 陈国兴. 地铁车站结构非线性地震损伤演化规律分析[J]. 工程抗震与加固改造, 2010, 32(1):110-116. DOI:10.16226/j.issn.1002-8412.2010.01.001.
Zuo X,Yang S C, Chen G X. Analysis on evolution of nonlinear seismic damage of subway station structure [J]. Earthquake Resistant Engineering and Retrofitting, 2010, 32(1):110-116. DOI:10.16226/j.issn.1002-8412.2010.01.001. (in Chinese)
[9] Zhuang H Y, Hu Z H, Wang X J, et al. Seismic responses of a large underground structure in liquefied soils by FEM numerical modelling[J].Bulletin of Earthquake Engineering, 2015, 13(12):3645-3668. DOI:10.1007/s10518-015-9790-6.
[10] Chen Z Y, Liu Z Q. Effects of central column aspect ratio on seismic performances of subway station structures[J].Advances in Structural Engineering, 2018, 21(1):14-29. DOI:10.1177/1369433217706777.
[11] 姜忻良, 谭丁, 姜南. 交叉隧道地震反应三维有限元和无限元分析[J]. 天津大学学报, 2004, 37(4):307-311. DOI:10.3969/j.issn.0493-2137.2004.04.006.
Jiang X L, Tan D, Jiang N. 3D finite and infinite element analysis for seismic response of intersecting tunnel[J].Journal of Tianjin University, 2004, 37(4):307-311. DOI:10.3969/j.issn.0493-2137.2004.04.006. (in Chinese)
[12] 陈磊, 陈国兴, 龙慧. 地铁交叉隧道近场强地震反应特性的三维精细化非线性有限元分析[J]. 岩土力学, 2010, 31(12):3971-3976, 3983. DOI:10.16285/j.rsm.2010.12.013.
Chen L, Chen G X, Long H. 3D refined nonlinear finite element analysis of intersecting metro tunnels under near-field ground motion[J]. Rock and Soil Mechanics, 2010, 31(12):3971-3976, 3983. DOI:10.16285/j.rsm.2010.12.013. (in Chinese)
[13] 张波, 陶连金, 姜峰, 等. 地铁超近距交叉结构在水平地震荷载下的响应影响分析[J]. 铁道建筑, 2011(11):47-50. DOI:10.3969/j.issn.1003-1995.2011.11.015.
Zhang B, Tao L J, Jiang F, et al.The subway super macro cross structure response under horizontal seismic load impact analysis[J]. Railway Engineering, 2011(11):47-50. DOI:10.3969/j.issn.1003-1995.2011.11.015. (in Chinese)
[14] 中华人民共和国国家标准编写组. GB 50010—2010混凝土结构设计规范[S]. 北京:中国建筑工业出版社, 2015.
[15] 费康, 刘汉龙. ABAQUS的二次开发及在土石坝静、动力分析中的应用[J]. 岩土力学, 2010, 31(3):881-890. DOI:10.16285/j.rsm.2010.03.024.
Fei K, Liu H L. Secondary development of ABAQUS and its application to static and dynamic analyses of earth-rockfill dam[J]. Rock and Soil Mechanics, 2010, 31(3):881-890. DOI:10.16285/j.rsm.2010.03.024. (in Chinese)
[16] Kramer S L, Paulsen S B. Practical use of geotechnical site response models[C]//Proceedings of International Workshop on Uncertainties in Nonlinear Soil Properties and Their Impact on Modeling Dynamic Soil Response. Berkeley, California, USA, 2004:162-165.
[17] Idriss I M. Influence of local site conditions on earthquake ground motions[C]//Proceedings of the 4th U.S. National Conference on Earthquake Engineering. Palm Springs, California, USA, 1990, 1:55-57.
[18] 楼梦麟, 潘旦光, 范立础. 土层地震反应分析中侧向人工边界的影响[J]. 同济大学学报(自然科学版), 2003, 31(7):757-761. DOI:10.3321/j.issn:0253-374X.2003.07.001.
Lou M L, Pan D G, Fan L C. Effect of vertical artificial boundary on seismic response of soil layer[J].Journal of Tongji University (Natural Science), 2003, 31(7):757-761. DOI:10.3321/j.issn:0253-374X.2003.07.001. (in Chinese)
[19] British Standards Institution. BS 5975-2008+A1-2011 Code of practice for temporary works procedures and the permissible stress design of falsework[S]. London:BSI, 2011.
[20] Deeks A J, Randolph M F. Axisymmetric time-domain transmitting boundaries[J].Journal of Engineering Mechanics, 1994, 120(1):25-42. DOI:10.1061/(asce)0733-9399(1994)120:1(25).
[21] 刘晶波, 王振宇, 杜修力, 等.波动问题中的三维时域黏弹性人工边界[J]. 工程力学, 2005, 22(6):46-51. DOI:10.3969/j.issn.1000-4750.2005.06.008.
Liu J B, Wang Z Y, Du X L, et al. Three-dimensional visco-elastic artificial boundaries in time domain for wave motion problems[J]. Engineering Mechanics, 2005, 22(6):46-51. DOI:10.3969/j.issn.1000-4750.2005.06.008. (in Chinese)
[22] 杜修力, 许紫刚, 袁雪纯, 等. 地震动峰值位移和峰值速度对地下结构地震反应的影响[J]. 震灾防御技术, 2018, 13(2):293-303. DOI:10.11899/zzfy20180205.
Du X L, Xu Z G, Yuan X C, et al. Influence of peak ground displacement and peak ground velocity of ground motion on dynamic response of underground structures[J]. Technology for Earthquake Disaster Prevention, 2018, 13(2):293-303. DOI:10.11899/zzfy20180205. (in Chinese)
[23] 铁摩辛柯 S, 沃诺斯基 S. 板壳理论[M]. 《板壳理论》翻译组, 译. 北京:科学出版社, 1977:189-226.
[24] Xu Q L, Ji T G, Jiang R, et al. Unified solution method of rectangular plate elastic bending[J]. Journal of Southeast University (English Edition), 2002, 18(3):241-248. DOI:10.3969/j.issn.1003-7985.2002.03.010.

备注/Memo

备注/Memo:
收稿日期: 2019-03-18.
作者简介: 于仲洋(1991—),男,博士生;张鸿儒(联系人),男,博士,教授,博士生导师,hrzhang@bjtu.edu.cn.
基金项目: 国家自然科学基金资助项目(51678042).
引用本文: 于仲洋,张鸿儒.交叉换乘地铁车站地震特性及其设计方法[J].东南大学学报(自然科学版),2019,49(5):1011-1018. DOI:10.3969/j.issn.1001-0505.2019.05.027.
更新日期/Last Update: 2019-09-20