[1]韦中,宋光明,孙慧玉,等.脊柱型四足机器人运动学建模及对角小跑步态规划[J].东南大学学报(自然科学版),2019,49(6):1019-1025.[doi:10.3969/j.issn.1001-0505.2019.06.001]
 Wei Zhong,Song Guangming,Sun Huiyu,et al.Kinematic modeling and trotting gait planning for the quadruped robot with an active spine[J].Journal of Southeast University (Natural Science Edition),2019,49(6):1019-1025.[doi:10.3969/j.issn.1001-0505.2019.06.001]
点击复制

脊柱型四足机器人运动学建模及对角小跑步态规划()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第6期
页码:
1019-1025
栏目:
自动化
出版日期:
2019-11-20

文章信息/Info

Title:
Kinematic modeling and trotting gait planning for the quadruped robot with an active spine
作者:
韦中123宋光明123孙慧玉123乔贵方1234戚奇恩123何淼123宋爱国123
1东南大学仪器科学与工程学院, 南京 210096; 2东南大学生物电子学国家重点实验室, 南京 210096; 3东南大学江苏省远程测控技术重点实验室, 南京 210096; 4南京工程学院自动化学院, 南京 211167
Author(s):
Wei Zhong123 Song Guangming123 Sun Huiyu123 Qiao Guifang1234Qi Qi’en123 He Miao123 Song Aiguo123
1School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China
2State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
3Jiangsu Key Lab of Remote Measurement and Control, Southeast University, Nanjing 210096, China
4School of Automation, Nanjing Institute of Technology, Nanjing 211167, China
关键词:
四足机器人 运动学建模 对角小跑 步态规划 脊腿协调运动
Keywords:
quadruped robot kinematic modeling trot gait planning coordinated motion of spine and legs
分类号:
TP242.6
DOI:
10.3969/j.issn.1001-0505.2019.06.001
摘要:
针对四足机器人在常规对角小跑步态中绕对角支撑线的翻转力矩会导致机器人失衡问题,在运动学建模和失衡原因分析的基础上提出了2种新颖的对角小跑步态规划方法:叠加腿部侧摆运动的对角小跑步态和叠加脊柱偏航摆动的对角小跑步态.前者引入腿的侧摆关节的运动调节支撑腿足端轨迹,后者增加脊柱偏航关节的运动调节机器人的重心并保持足端轨迹不变,这2种方法均使机器人重心在整个对角小跑步态周期位于对角支撑线上.仿真结果显示,相比于常规对角小跑步态和足端轨迹后移的对角小跑步态,提出的对角小跑步态规划方法显著提高了机器人运动的稳定性.此外,提出的规划方法在存在模型误差时具有鲁棒性.
Abstract:
To solve the unbalance problem caused by the moment around the diagonal supporting axis for the quadruped robot in the trotting gait, based on the kinematic modeling and the analysis of the unbalance reason, two novel methods for trotting gait planning are proposed including trotting gait combined with the abduction and adduction of legs and trotting gait combined with the spine motion in the yaw direction. The former introduces the abduction and adduction of legs to adjust the foot trajectories of the supporting legs. The latter augments the spine motion in the yaw direction to regulate the center of gravity of the robot while the foot trajectories remain unchanged. The two methods both make the center of gravity of the robot locate on the diagonal supporting axis in the whole trotting gait. The simulation results show that compared with the common trotting gait and the trotting gait with the foot trajectory moving backward, the proposed trotting gaits can greatly improve the locomotion stability of the robot. In addition, the robustness of the proposed gaits is verified when deviations of the model parameters exist.

参考文献/References:

[1] 郑浩峻,张秀丽.足式机器人生物控制方法与应用[M].北京:清华大学出版社,2011:1.
  Zheng H J, Zhang X L. Biologically-inspired motion control theory and its application for a legged-robot [M]. Beijing: Tsinghua University Press, 2011: 1.(in Chinese)
[2] Wooden D, Malchano M, Blankespoor K, et al. Autonomous navigation for BigDog[C]//2010 IEEE International Conference on Robotics and Automation. Anchorage, AK, USA, 2010: 4736-4741. DOI:10.1109/robot.2010.5509226.
[3] Neuhaus P D, Pratt J E, Johnson M J. Comprehensive summary of the institute for human and machine cognition’s experience with littledog[J].The International Journal of Robotics Research, 2011, 30(2): 216-235. DOI:10.1177/0278364910390538.
[4] Wei Z, Song G M, Qiao G F, et al. Design and implementation of a leg-wheel robot: Transleg[J]. Journal of Mechanisms and Robotics, 2017, 9(5): 051001. DOI:10.1115/1.4037018.
[5] Owaki D, Ishiguro A. A quadruped robot exhibiting spontaneous gait transitions from walking to trotting to galloping[J].Scientific Reports, 2017, 7: 277-1-277-10. DOI:10.1038/s41598-017-00348-9.
[6] Wei Z, Song G M, Sun H Y, et al. Turning strategies for the bounding quadruped robot with an active spine[J].Industrial Robot: The International Journal of Robotics Research and Application, 2018, 45(5): 657-668. DOI:10.1108/ir-06-2018-0119.
[7] Inagaki K, Kobayashi H. Dynamical motion control for quadruped walking with autonomous distributed system [C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS). Munich, Germany, 1994: 1004-1010. DOI:10.1109/iros.1994.407534.
[8] 张秀丽, 曾翔宇, 郑浩峻. 四足机器人高速动态行走中后腿拖地问题研究[J]. 高技术通讯, 2011, 21(4): 404-410. DOI:10.3772/j.issn.1002-0470.2011.04.013.
Zhang X L, Zeng X Y, Zheng H J. Resolution of the hind leg dragging problem of a quadrupedal robot in high-speed dynamic walking [J]. Chinese High Technology Letters, 2011, 21(4): 404-410. DOI:10.3772/j.issn.1002-0470.2011.04.013. (in Chinese)
[9] 何冬青, 马培荪, 曹冲振, 等. 四足机器人对角小跑起步姿态对稳定性的影响[J]. 上海交通大学学报, 2005, 39(6): 880-883.DOI:10.3321/j.issn:1006-2467.2005.06.009.
He D Q, Ma P S, Cao C Z, et al. Effects of the initial stance of quadruped trotting on stability[J]. Journal of Shanghai Jiaotong University, 2005, 39(6): 880-883. DOI:10.3321/j.issn:1006-2467.2005.06.009. (in Chinese)
[10] 郑楚婷, 宋光明, 乔贵方, 等. 具有主动腰关节的四足机器人在间歇性对角小跑步态下的姿态平衡控制[J]. 机器人, 2016, 38(6): 670-677. DOI:10.13973/j.cnki.robot.2016.0670.
Zheng C T, Song G M, Qiao G F, et al. Posture balance control of the quadruped robot with an active waist joint during intermittent trot locomotion[J].Robot, 2016, 38(6): 670-677. DOI:10.13973/j.cnki.robot.2016.0670. (in Chinese)
[11] 李中雯, 王斌锐, 陈迪剑. 有并联脊柱的四足机器人步态规划[J]. 浙江大学学报(工学版), 2018, 52(7): 1267-1274. DOI:10.3785/j.issn.1008-973X.2018.07.006.
Li Z W, Wang B R, Chen D J. Gait planning for quadruped robot with parallel spine[J]. Journal of Zhejiang University(Engineering Science), 2018, 52(7): 1267-1274. DOI:10.3785/j.issn.1008-973X.2018.07.006. (in Chinese)
[12] Ajallooeian M. Pattern generation for rough terrain locomotion with quadrupedal robots [D]. Switzerland: École polytechnique fédérale de Lausanne, 2015.
[13] Zhang G T, Rong X W, Hui C, et al. Torso motion control and toe trajectory generation of a trotting quadruped robot based on virtual model control[J].Advanced Robotics, 2016, 30(4): 284-297. DOI:10.1080/01691864.2015.1113889.
[14] 谢惠祥, 尚建忠, 罗自荣, 等. 四足机器人对角小跑中机体翻转分析与姿态控制[J]. 机器人, 2014, 36(6): 676-682. DOI:10.13973/j.cnki.robot.2014.0676.
Xie H X, Shang J Z, Luo Z R, et al. Body rolling analysis and attitude control of a quadruped robot during trotting[J]. Robot, 2014, 36(6): 676-682. DOI:10.13973/j.cnki.robot.2014.0676. (in Chinese)
[15] Niku S B. 机器人学导论——分析、系统及应用[M]. 孙富春,等译.北京: 电子工业出版社, 2013:54-58.
  Niku S B. Introduction to robotics analysis, control, applications[M]. Translated by Sun F C, et al. Beijing: Publishing House of Electronics Industry, 2013: 54-58.(in Chinese)

相似文献/References:

[1]刘方湖,李满华,马培荪.管道形轮腿式月球探测机器人的运动学建模[J].东南大学学报(自然科学版),2003,33(6):741.[doi:10.3969/j.issn.1001-0505.2003.06.015]
 Liu Fanghu,Li Manhua,Ma Peisun.Kinematic modeling of a pipeline-shaped wheel-legged lunar exploration robot[J].Journal of Southeast University (Natural Science Edition),2003,33(6):741.[doi:10.3969/j.issn.1001-0505.2003.06.015]
[2]葛卓,罗庆生,贾燕,等.基于生物反射模型的四足机器人坡面运动控制与越障研究[J].东南大学学报(自然科学版),2017,47(4):697.[doi:10.3969/j.issn.1001-0505.2017.04.012]
 Ge Zhuo,Luo Qingsheng,Jia Yan,et al.Study on quadruped robot ramp-trotting and obstacle-crossing based on biological reflex model[J].Journal of Southeast University (Natural Science Edition),2017,47(6):697.[doi:10.3969/j.issn.1001-0505.2017.04.012]
[3]韦中,宋光明,乔贵方,等.脊柱型四足机器人粗糙可变地形对角小跑运动控制[J].东南大学学报(自然科学版),2020,50(2):385.[doi:10.3969/j.issn.1001-0505.2020.02.024]
 Wei Zhong,Song Guangming,Qiao Guifang,et al.Trotting locomotion control for quadruped robot with active spine over rough deformable terrain[J].Journal of Southeast University (Natural Science Edition),2020,50(6):385.[doi:10.3969/j.issn.1001-0505.2020.02.024]

备注/Memo

备注/Memo:
收稿日期: 2019-05-22.
作者简介: 韦中(1989—),男,博士生;宋光明(联系人),男,博士,教授,博士生导师,mikesong@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(61375076)、东南大学优秀博士学位论文培育基金资助项目(YBJJ1794).
引用本文: 韦中,宋光明,孙慧玉,等.脊柱型四足机器人运动学建模及对角小跑步态规划[J].东南大学学报(自然科学版),2019,49(6):1019-1025. DOI:10.3969/j.issn.1001-0505.2019.06.001.
更新日期/Last Update: 2019-11-20