[1]刘洋,韩吉田,游怀亮.基于SOFC/GT和跨临界CO2动力/制冷循环的冷热电联供系统性能[J].东南大学学报(自然科学版),2019,49(6):1072-1080.[doi:10.3969/j.issn.1001-0505.2019.06.008]
 Liu Yang,Han Jitian,You Huailiang.Performance of CCHP system based on SOFC/GT and transcritical CO2 power/refrigeration cycles[J].Journal of Southeast University (Natural Science Edition),2019,49(6):1072-1080.[doi:10.3969/j.issn.1001-0505.2019.06.008]
点击复制

基于SOFC/GT和跨临界CO2动力/制冷循环的冷热电联供系统性能()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第6期
页码:
1072-1080
栏目:
能源与动力工程
出版日期:
2019-11-20

文章信息/Info

Title:
Performance of CCHP system based on SOFC/GT and transcritical CO2 power/refrigeration cycles
作者:
刘洋韩吉田游怀亮
山东大学能源与动力工程学院, 济南 250061
Author(s):
Liu Yang Han Jitian You Huailiang
School of Energy and Power Engineering, Shandong University, Jinan 250061, China
关键词:
冷热电联供 SOFC/GT 跨临界CO2循环 制冷循环
Keywords:
combined cooling heating and power(CCHP) solid oxide fuel cell/gas turbine(SOFC/GT) transcritical CO2 cycle refrigeration cycle
分类号:
TK115;TM911.4
DOI:
10.3969/j.issn.1001-0505.2019.06.008
摘要:
提出了一种新型的冷热电联供系统,通过跨临界CO2动力循环回收SOFC/GT系统的排烟余热进行发电,利用跨临界CO2制冷循环向用户提供冷量和生活热水.建立了该联供系统热力性能的仿真计算模型,对系统进行了能量和分析,并对该联供系统的一些关键参数进行了敏感性分析.仿真结果表明,在设计条件下,该系统的净发电效率为61.54%,总效率为62.24%,净发电量、供热量和供冷量分别为246.507、241.501和45.616 kW,损失较大的部件依次为后燃室、预热器3和SOFC等.在研究的参数范围内,增大跨临界CO2制冷循环流率或降低空气流率和跨临界CO2动力循环流率均可提高系统的总能输出量;增大SOFC工作压力或降低空气流率和跨临界CO2制冷循环流率均可提高联供系统的净发电效率和总效率.
Abstract:
A novel combined cooling, heating and power(CCHP)system based on solid oxide fuel cell/gas turbine(SOFC/GT)and transcritical CO2 power/refrigeration cycles was proposed. The waste heat of the SOFC/GT system was recovered by the transcritical CO2 power cycle. The cooling and the domestic hot water were supplied to users by the transcritical CO2 refrigeration cycle. The simulation models for the thermodynamic performance of the CCHP system were established, then energy and exergy analyses of the entire system were conducted and the sensitivity for some key parameters on the CCHP system performance was analyzed. The simulation results show that the net power generation and the exergy efficiencies of the novel CCHP system are 61.54% and 62.24%, while the net power generation, heating and cooling outputs are 246.507, 241.501 and 45.616 kW, under the design conditions. The components with large exergy loss are the afterburner, preheater 3 and the SOFC, respectively. In the studied parameter ranges, total energy output can be improved by increasing the flowrate of the transcritical CO2 refrigeration cycle and reduced by increasing the air flow rate or the flowrate of the transcritical CO2 power cycle; the net power generation and exergy efficiencies of the CCHP system can be improved by increasing the SOFC pressure, and reduced by increasing the air flowrate or the flowrate of the transcritical CO2 refrigeration cycle.

参考文献/References:

[1] Haghghi M A, Holagh S G, Chitsaz A, et al. Thermodynamic assessment of a novel multi-generation solid oxide fuel cell-based system for production of electrical power, cooling, fresh water, and hydrogen [J]. Energy Conversion and Management, 2019, 197: 111895. DOI:10.1016/j.enconman.2019.111895.
[2] Choudhary T, Sanjay. Thermodynamic assessment of advanced SOFC-blade cooled gas turbine hybrid cycle[J].International Journal of Hydrogen Energy, 2017, 42(15): 10248-10263. DOI:10.1016/j.ijhydene.2017.02.178.
[3] Zhe Y,Lin Q, Zhu B. Thermodynamic analysis of ITSOFC hybrid system for polygenerations[J]. International Journal of Hydrogen Energy, 2010, 35(7): 2824-2828. DOI:10.1016/j.ijhydene.2009.05.028.
[4] Tse L K C, Wilkins S, McGlashan N, et al. Solid oxide fuel cell/gas turbine trigeneration system for marine applications[J].Journal of Power Sources, 2011, 196(6): 3149-3162. DOI:10.1016/j.jpowsour.2010.11.099.
[5] Sanaye S, Katebi A. 4E analysis and multi objective optimization of a micro gas turbine and solid oxide fuel cell hybrid combined heat and power system[J].Journal of Power Sources, 2014, 247: 294-306. DOI:10.1016/j.jpowsour.2013.08.065.
[6] Ishak F, Dincer I, Zamfirescu C. Energy and exergy analyses of direct ammonia solid oxide fuel cell integrated with gas turbine power cycle[J].Journal of Power Sources, 2012, 212: 73-85. DOI:10.1016/j.jpowsour.2012.03.083.
[7] Liu Y, Han J, You H. Performance analysis of a CCHP system based on SOFC/GT/CO2 cycle and ORC with LNG cold energy utilization [J]. International Journal of Hydrogen Energy, 2019,44(56):29700-29710. DOI:10.1016/j.ijhydene.2019.02.201.
[8] Zhang S Q, Liu H L, Liu M L, et al. An efficient integration strategy for a SOFC-GT-SORC combined system with performance simulation and parametric optimization[J]. Applied Thermal Engineering, 2017, 121: 314-324. DOI:10.1016/j.applthermaleng.2017.04.066.
[9] Yan Z Q, Zhao P, Wang J F, et al. Thermodynamic analysis of an SOFC-GT-ORC integrated power system with liquefied natural gas as heat sink[J]. International Journal of Hydrogen Energy, 2013, 38(8): 3352-3363. DOI:10.1016/j.ijhydene.2012.12.101.
[10] Yamaguchi H, Zhang X R, Fujima K, et al. Solar energy powered Rankine cycle using supercritical CO2[J]. Applied Thermal Engineering, 2006, 26(17/18): 2345-2354. DOI:10.1016/j.applthermaleng.2006.02.029.
[11] Sánchez D, Muñoz de Escalona J M, Chacartegui R, et al. A comparison between molten carbonate fuel cells based hybrid systems using air and supercritical carbon dioxide Brayton cycles with state of the art technology[J]. Journal of Power Sources, 2011, 196(9): 4347-4354. DOI:10.1016/j.jpowsour.2010.09.091.
[12] Meng Q S, Han J T, Kong L J, et al. Thermodynamic analysis of combined power generation system based on SOFC/GT and transcritical carbon dioxide cycle[J]. International Journal of Hydrogen Energy, 2017, 42(7): 4673-4678. DOI:10.1016/j.ijhydene.2016.09.067.
[13] 刘洋, 韩吉田, 游怀亮. 基于SOFC/GT/TCO2复合动力循环和溴化锂制冷机的冷热电联供系统性能[J]. 化工学报, 2018, 69(S2): 341-349.
  Liu Y, Han J T, You H L. Performance of combined cooling, heating and power system based on SOFC/GT/TCO2 integrated power cycle and LiBr-water absorption chiller[J]. CIESC Journal, 2018, 69(S2): 341-349.(in Chinese)
[14] Chen Y, Gu J J. The optimum high pressure for CO2 transcritical refrigeration systems with internal heat exchangers[J]. International Journal of Refrigeration, 2005, 28(8): 1238-1249. DOI:10.1016/j.ijrefrig.2005.08.009.
[15] Yang J L, Ma Y T, Liu S C. Performance investigation of transcritical carbon dioxide two-stage compression cycle with expander[J]. Energy, 2007, 32(3): 237-245. DOI:10.1016/j.energy.2006.03.031.
[16] Cavallini A, Cecchinato L, Corradi M, et al. Two-stage transcritical carbon dioxide cycle optimisation: A theoretical and experimental analysis[J].International Journal of Refrigeration, 2005, 28(8): 1274-1283. DOI:10.1016/j.ijrefrig.2005.09.004.
[17] Rashidi M M, Parsa A B, Shamekhi L, et al. Exergetic optimisation of a multi-stage compression transcritical refrigeration cycle [J]. International Journal of Exergy, 2016, 20(1): 22-47. DOI:10.1504/IJEX.2016.076677.
[18] Sánchez D, Chacartegui R, Muñoz A, et al. Thermal and electrochemical model of internal reforming solid oxide fuel cells with tubular geometry[J]. Journal of Power Sources, 2006, 160(2): 1074-1087. DOI:10.1016/j.jpowsour.2006.02.098.
[19] Chan S H, Ho H K, Tian Y. Modelling of simple hybrid solid oxide fuel cell and gas turbine power plant[J].Journal of Power Sources, 2002, 109(1): 111-120. DOI:10.1016/S0378-7753(02)00051-4.
[20] WalnumH T, Nekså P, Nord L O, et al. Modelling and simulation of CO2(carbon dioxide)bottoming cycles for offshore oil and gas installations at design and off-design conditions[J]. Energy, 2013, 59: 513-520. DOI:10.1016/j.energy.2013.06.071.

相似文献/References:

[1]张俊礼,葛斌,孙锦.非能量费用影响下的冷热电联供产品成本符号火用分析[J].东南大学学报(自然科学版),2011,41(3):568.[doi:10.3969/j.issn.1001-0505.2011.03.027]
 Zhang Junli,Ge Bin,Sun Jin.Symbolic exergoeconomics analysis of CCHP products cost including non-energy charge[J].Journal of Southeast University (Natural Science Edition),2011,41(6):568.[doi:10.3969/j.issn.1001-0505.2011.03.027]

备注/Memo

备注/Memo:
收稿日期: 2019-04-26.
作者简介: 刘洋(1991—),男,博士生;韩吉田(联系人),男,博士,教授,博士生导师,jthan@sdu.edu.cn.
基金项目: 国家自然科学基金国际(地区)合作与交流资助项目(41761144067)、国家自然科学基金资助项目(51376110).
引用本文: 刘洋,韩吉田,游怀亮.基于SOFC/GT和跨临界CO2动力/制冷循环的冷热电联供系统性能[J].东南大学学报(自然科学版),2019,49(6):1072-1080. DOI:10.3969/j.issn.1001-0505.2019.06.008.
更新日期/Last Update: 2019-11-20