[1]李保亮,霍彬彬,尤南乔,等.不同养护条件下钢渣/矿渣复合水泥胶砂的耐硫酸盐侵蚀性能[J].东南大学学报(自然科学版),2019,49(6):1144-1152.[doi:10.3969/j.issn.1001-0505.2019.06.018]
 Li Baoliang,Huo Binbin,You Nanqiao,et al.Sulfate resistance of steel slag blended/GGBFS blended cement mortars under different curing conditions[J].Journal of Southeast University (Natural Science Edition),2019,49(6):1144-1152.[doi:10.3969/j.issn.1001-0505.2019.06.018]
点击复制

不同养护条件下钢渣/矿渣复合水泥胶砂的耐硫酸盐侵蚀性能()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第6期
页码:
1144-1152
栏目:
材料科学与工程
出版日期:
2019-11-20

文章信息/Info

Title:
Sulfate resistance of steel slag blended/GGBFS blended cement mortars under different curing conditions
作者:
李保亮霍彬彬尤南乔朱国瑞陈春张亚梅
东南大学材料科学与工程学院, 南京 211189; 东南大学江苏省土木工程材料重点实验室, 南京 211189
Author(s):
Li Baoliang Huo Binbin You Nanqiao Zhu Guorui Chen Chun Zhang Yamei
School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
Jiangsu Key Laboratory of Construction Materials, Southeast University, Nanjing 211189, China
关键词:
钢渣复合水泥胶砂 矿渣复合水泥胶砂 蒸养 硫酸盐侵蚀 干湿循环 半浸泡
Keywords:
steel slag blended cement mortar GGBFS blended cement mortar steam curing sulfate resistance dry-wet cycles partial immersion
分类号:
TU528
DOI:
10.3969/j.issn.1001-0505.2019.06.018
摘要:
以钢渣和矿渣为矿物掺合料,采用0%和20%的取代量,在蒸养(早期80 ℃蒸养7 h)和标养条件下分别制备了钢渣和矿渣复合水泥胶砂,经过28 d的初始标准养护后,将其暴露于干湿循环与半浸泡2种硫酸盐侵蚀条件下,通过外观质量观察、质量变化和强度变化等手段对比了钢渣复合水泥胶砂与矿渣复合水泥胶砂的耐硫酸盐侵蚀性能.结果表明:2种养护制度下,钢渣复合水泥胶砂的耐干湿循环硫酸盐侵蚀性能均优于矿渣复合水泥胶砂;半浸泡硫酸盐侵蚀条件下,标养钢渣复合水泥胶砂的性能弱于标养矿渣复合水泥胶砂,但是蒸养钢渣复合水泥胶砂的情况正好相反.蒸养虽然粗化了水泥胶砂孔结构,使得蒸养水泥胶砂在半浸泡硫酸盐侵蚀条件下较早地出现了裂缝,但是蒸养同样提高了28 d水泥胶砂的化学结合水量、C-S-H含量并促进了C-A-S-H的形成,从而有助于改善蒸养水泥胶砂的抗硫酸盐侵蚀性能.
Abstract:
Steel slag(SS)and ground granulated blast furnace slag(GGBFS)blended cement mortars were prepared under two replacement levels(0% and 20%)and two curing regimes(initial steam curing at 80 ℃ for 7 h and initial standard curing). After 28 d standard curing, they were exposed to two kinds of sulfate attack conditions: dry-wet cycles and partial immersion. The sulfate resistances were compared by appearance quality check, mass change and strength change. The results show that, no matter what initial curing condition is applied, SS cement mortar shows better performance than the GGBFS cement mortar under dry-wet cycles and sulfate attack. The performance of standard cured SS cement mortar is worse than that of standard cured GGBFS cement mortar under partial immersion sulfate attack, but the situation of steam cured SS cement mortar is just the opposite. The initial steam curing coarsens the pore structure of the cement mortar so that cracks appear earlier in the steam cured mortar than that in the standard cured one under the partial immersion, but the initial steam curing also improves the non-evaporable water content and C-S-H gels content in the cement mortar hydrated for 28 d, and promotes the C-A-S-H formation, thus, helping to improve the sulfate resistance of steam cured mortars.

参考文献/References:

[1] Cassagnabère F, Mouret M, Escadeillas G. Early hydration of clinker-slag-metakaolin combination in steam curing conditions, relation with mechanical properties [J]. Cement and Concrete Research, 2009, 39(12): 1164-1173. DOI:10.1016/j.cemconres.2009.07.023.
[2] Ho D W S, Chua C W, Tam C T. Steam-cured concrete incorporating mineral admixtures [J]. Cement and Concrete Research, 2003, 33(4): 595-601. DOI:10.1016/S0008-8846(02)01028-1.
[3] 赵世煜. 免蒸汽养护PHC管桩混凝土的关键技术研究[D]. 南京: 东南大学, 2017.
  Zhao S Y. Study on the key technology of non-steam cured high strength concrete used for PHC pipe piles [D]. Nanjing: Southeast University, 2017.(in Chinese)
[4] 王凯祥, 龙红明, 孟庆民, 等. 基于物理激发的钢渣胶凝活性及机理[J]. 钢铁, 2018, 53(3): 82-86. DOI:10.13228/j.boyuan.issn0449-749x.20170419.
Wang K X, Long H M, Meng Q M, et al. Steel slag cementitious activity and mechanism based on physical excitation [J]. Iron and Steel, 2018, 53(3): 82-86. DOI:10.13228/j.boyuan.issn0449-749x.20170419. (in Chinese)
[5] Wang Q, Yan P Y, Yang J W, et al. Influence of steel slag on mechanical properties and durability of concrete[J]. Construction and Building Materials, 2013, 47: 1414-1420. DOI:10.1016/j.conbuildmat.2013.06.044.
[6] Wang Q, Yan P Y. Hydration properties of basic oxygen furnace steel slag[J]. Construction and Building Materials, 2010, 24(7): 1134-1140. DOI:10.1016/j.conbuildmat.2009.12.028.
[7] Kourounis S, Tsivilis S, Tsakiridis P E, et al. Properties and hydration of blended cements with steel making slag [J]. Cement and Concrete Research, 2007, 37(6): 815-822. DOI:10.1016/j.cemconres.2007.03.008.
[8] Li B L, Huo B B, Zhang Y M. Sulfate resistance and hydration products of steam cured GGBFS blended cement mortar [J]. American Concrete Institute, ACI Special Publication, 2018, 330: 205-218.
[9] Li B L, Huo B B, Cao R L, et al. Sulfate resistance of steam cured ferronickel slag blended cement mortar[J]. Cement and Concrete Composites, 2019, 96: 204-211. DOI:10.1016/j.cemconcomp.2018.12.001.
[10] 李响, 阎培渝. 高温养护对复合胶凝材料水化程度及微观形貌的影响[J]. 中南大学学报(自然科学版), 2010, 41(6): 2321-2326.
  Li X, Yan P Y. Effect of high temperature curing on hydration degree and micro-morphology of complex binders [J]. Journal of Central South University, 2010, 41(6): 2321-2326.(in Chinese)
[11] Li B L, Wang Y H, Yang L, et al. Sulfate resistance and hydration products of steam cured steel slag blended cement mortar under dry-wet cycle [J]. Journal of Sustainable Cement-Based Materials, 2019: 8(6):353-366. DOI:10.1080/21650373.2018.1564709.
[12] Matschei T, Lothenbach B, Glasser F P. The role of calcium carbonate in cement hydration[J].Cement and Concrete Research, 2007, 37(4): 551-558. DOI:10.1016/j.cemconres.2006.10.013.
[13] Lothenbach B, Le Saout G, Gallucci E, et al. Influence of limestone on the hydration of Portland cements[J].Cement and Concrete Research, 2008, 38(6): 848-860. DOI:10.1016/j.cemconres.2008.01.002.
[14] Kakali G, Tsivilis S, Aggeli E, et al. Hydration products of C3A, C3S and Portland cement in the presence of CaCO3[J]. Cement and Concrete Research, 2000, 30(7): 1073-1077. DOI:10.1016/S0008-8846(00)00292-1.
[15] Schmidt T, Lothenbach B, Romer M, et al. Physical and microstructural aspects of sulfate attack on ordinary and limestone blended Portland cements[J].Cement and Concrete Research, 2009, 39(12): 1111-1121. DOI:10.1016/j.cemconres.2009.08.005.
[16] Altun I A, Y�131;lmaz I. Study on steel furnace slags with high MgO as additive in Portland cement [J]. Cement and Concrete Research, 2002, 32(8): 1247-1249. DOI:10.1016/s0008-8846(02)00763-9.
[17] Liu Z, Cui X H, Tang M S. Hydration and setting time of MgO-type expansive cement [J]. Cement and Concrete Research, 1992, 22(1): 1-5. DOI:10.1016/0008-8846(92)90129-j.
[18] Péra J, Ambroise J, Chabannet M. Properties of blast-furnace slags containing high amounts of manganese[J].Cement and Concrete Research, 1999, 29(2): 171-177. DOI:10.1016/s0008-8846(98)00096-9.
[19] Aligizaki K K. Pore structure of cement-based materials: Testing, interpretation and requirements [M].London:CRC Press, 2006:1-33.
[20] 吴中伟, 廉慧珍. 高性能混凝土[M]. 北京: 中国铁道出版社, 1999:36-61.
[21] Liu B J, Xie Y J, Li J. Influence of steam curing on the compressive strength of concrete containing supplementary cementing materials[J]. Cement and Concrete Research, 2005, 35(5): 994-998. DOI:10.1016/j.cemconres.2004.05.044.
[22] 赵计辉. 钢渣的粉磨/水化特征及其复合胶凝材料的组成与性能[D]. 北京: 中国矿业大学(北京), 2015.
  Zhao J H. Grinding and hydration characteristics of steel slag and composition and properties of composite cemtitious materials containing steel slag powder [D]. Beijing: China University of Mining & Technology, Beijing, 2015.(in Chinese)
[23] Whittaker M, Zajac M, Haha M B, et al. The impact of alumina availability on sulfate resistance of slag composite cements [J]. Construction and Building Materials, 2016, 119: 356-369. DOI:10.1016/j.conbuildmat.2016.05.015.
[24] O’Connell M, McNally C, Richardson M G. Biochemical attack on concrete in wastewater applications: A state of the art review[J].Cement and Concrete Composites, 2010, 32(7): 479-485. DOI:10.1016/j.cemconcomp.2010.05.001.

备注/Memo

备注/Memo:
收稿日期: 2019-04-01.
作者简介: 李保亮(1983—),男,博士生;张亚梅(联系人),女,博士,教授,ymzhang@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51778132)、中日政府间科技合作资助项目(2016YFE0118200).
引用本文: 李保亮,霍彬彬,尤南乔,等.不同养护条件下钢渣/矿渣复合水泥胶砂的耐硫酸盐侵蚀性能[J].东南大学学报(自然科学版),2019,49(6):1144-1152. DOI:10.3969/j.issn.1001-0505.2019.06.018.
更新日期/Last Update: 2019-11-20