[1]朱健健,高建明,陈菲,等.砂浆半浸泡在硫酸钠溶液中不同表面处理材料防护效果比较[J].东南大学学报(自然科学版),2019,49(6):1162-1170.[doi:10.3969/j.issn.1001-0505.2019.06.020]
 Zhu Jianjian,Gao Jianming,Chen Fei,et al.Comparison of protective effects on different surface treated concretes partially immersed in sodium sulfate solution[J].Journal of Southeast University (Natural Science Edition),2019,49(6):1162-1170.[doi:10.3969/j.issn.1001-0505.2019.06.020]
点击复制

砂浆半浸泡在硫酸钠溶液中不同表面处理材料防护效果比较()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第6期
页码:
1162-1170
栏目:
数学、物理学、力学
出版日期:
2019-11-20

文章信息/Info

Title:
Comparison of protective effects on different surface treated concretes partially immersed in sodium sulfate solution
作者:
朱健健高建明陈菲贺知章
东南大学材料科学与工程学院, 南京 211189; 东南大学江苏省土木工程材料重点实验室, 南京 211189
Author(s):
Zhu Jianjian Gao Jianming Chen Fei He Zhizhang
School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
Jiangsu Key Laboratory of Construction Materials, Southeast University, Nanjing 211189, China
关键词:
半浸泡 砂浆 硫酸钠 表面处理
Keywords:
partial immersion mortar sodium sulfate surface treatment
分类号:
O482.3
DOI:
10.3969/j.issn.1001-0505.2019.06.020
摘要:
研究并评估了砂浆在硫酸钠溶液半浸泡状态下硅烷涂料、聚氨酯涂料、环氧树脂涂料、水玻璃涂料4种表面处理材料的防护效果,采用质量损失、相对动弹性模量变化指标来表征试件损伤,采用X射线荧光光谱仪测定SO2-4离子浓度分布,使用X射线衍射仪、全自动压汞仪和三维X-CT分析仪等对侵蚀试件进行分析.实验结果表明,试件半浸泡5个月后,水玻璃处理试件在未浸泡区域发生严重破坏,环氧树脂处理试件在与液面交界处环氧涂层翘起剥落;半浸泡状态下,试件质量增加率可以作为各类表面处理材料防护效果的判定指标;综合比较发现,表面处理材料防护效果从高到低为硅烷涂料、聚氨酯涂料、环氧树脂涂料、水玻璃涂料.
Abstract:
The effectiveness of four different surface treatment materials on concrete, such as silane coating, polyurethane coating, epoxy resin coating, and sodium silicate coating were studied and assessed. The mass loss and the relative dynamic modulus of elasticity were characterized as the damage of the specimen. SO2-4 ion concentration distribution was determined by X-ray fluorescence spectrometer. X-ray diffraction, the porosity and pore structure and three-dimensional X-CT were used to analyze the immersed speciments. The results show that after 5 months of partial immersion, the upper of the specimens treated with sodium silicate is seriously damaged, and the epoxy coating at the interface between the epoxy resin and the liquid surface is warped and peeled off. The increase rate of the specimen mass can be used as a criterion for evaluating the protective effect of various surface treatment materials. Under the partial immersion condition, the order of the protective effect from high to low for surface treatment materials is as follows: silane treatment, polyurethane treatment, epoxy resin treatment, and sodium silicate treatment.

参考文献/References:

[1] Zerda A S, Lesser A J. Intercalated clay nanocomposites: Morphology, mechanics, and fracture behavior[J]. Journal of Polymer Science Part B: Polymer Physics, 2001, 39(11): 1137-1146. DOI:10.1002/polb.1090.
[2] Moloney A C, Kausch H H, Kaiser T, et al. Parameters determining the strength and toughness of particulate filled epoxide resins[J]. Journal of Materials Science, 1987, 22(2): 381-393. DOI:10.1007/bf01160743.
[3] Franzoni E, Pigino B, Pistolesi C. Ethyl silicate for surface protection of concrete: Performance in comparison with other inorganic surface treatments[J]. Cement and Concrete Composites, 2013, 44: 69-76. DOI:10.1016/j.cemconcomp.2013.05.008.
[4] Zhutovsky S, Douglas Hooton R. Experimental study on physical sulfate salt attack[J]. Materials and Structures, 2017, 50: 54. DOI:10.1617/s11527-016-0936-z.
[5] 邓德华, 刘赞群, de Schutter G, 等. 关于“混凝土硫酸盐结晶破坏”理论的研究进展[J]. 硅酸盐学报, 2012, 40(2): 175-185. DOI:10.14062/j.issn.0454-5648.2012.02.002.
Deng D H, Liu Z Q, de Schutter G, et al. Research progress on theory of “sulfate salt weathering on concrete”[J]. Journal of the Chinese Ceramic Society, 2012, 40(2): 175-185. DOI:10.14062/j.issn.0454-5648.2012.02.002. (in Chinese)
[6] Nehdi M L, Suleiman A R, Soliman A M. Investigation of concrete exposed to dual sulfate attack[J]. Cement and Concrete Research, 2014, 64: 42-53. DOI:10.1016/j.cemconres.2014.06.002.
[7] 刘赞群. 混凝土硫酸盐侵蚀基本机理研究[D]. 长沙: 中南大学, 2010.
  Liu Z Q. Study of the basic mechanisms of sulfate attack on cementitious materials[D]. Changsha: Central South University, 2010.(in Chinese)
[8] 刘芳. 表面成膜型涂料对混凝土保护层性能的影响研究[D]. 南京: 南京林业大学, 2008.
  Liu F. Research on the effect of surface-film-forming coating to the performance of concrete cover[D]. Nanjing: Nanjing Forestry University, 2008.(in Chinese)
[9] 张馨元. 混凝土用硅烷类防护材料的制备及其对混凝土耐久性影响[D]. 青岛:青岛理工大学, 2014.
  Zhang X Y. Preparation of silane protective material for concrete and its effect on durability of concrete [D]. Qingdao: Qingdao Technological University, 2014.(in Chinese)
[10] Almusallam A A, Khan F M, Dulaijan S U, et al. Effectiveness of surface coatings in improving concrete durability[J]. Cement and Concrete Composites, 2003, 25(4/5): 473-481. DOI:10.1016/SO958-9465(02)00087-2.
[11] Walter G W. Application of impedance measurements to study performance of painted metals in aggressive solutions[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1981, 118: 259-273. DOI:10.1016/SO022-0728(81)80546-3.
[12] Hu J M, Zhang J Q, Cao C N. Determination of water uptake and diffusion of Cl- ion in epoxy primer on aluminum alloys in NaCl solution by electrochemical impedance spectroscopy[J]. Progress in Organic Coatings, 2003, 46(4): 273-279. DOI:10.1016/SO300-9440(03)00010-9.
[13] 孙家瑛, 吴初航, 周承功, 等. 钢筋混凝土桥梁耐久性调查及防治措施研究[J]. 混凝土, 2003(3): 15-18. DOI:10.3969/j.issn.1002-3550.2003.03.004.
Sun J Y, Wu C H, Zhou C G, et al. Investigation and study on prevention measures of the durability of steel concrete bridge[J]. Concrete, 2003(3): 15-18. DOI:10.3969/j.issn.1002-3550.2003.03.004. (in Chinese)
[14] 刘玉军. 混凝土保护涂层性能和测试方法的研究[D]. 北京:中国建筑材料科学研究院, 2004.
  Liu Y J. Study on performance and test method of concrete protective coating[D]. Beijing: China Academy of Building Materials Science, 2004.(in Chinese)
[15] 韩晓丽. 低浓度氯盐及水灰比对混凝土抗硫酸盐腐蚀性能影响规律的研究[D]. 徐州: 中国矿业大学, 2014.
  Han X L. Research on the influence law of low concentration chlorine and water cement ratio to concrete sulfate corrosionperformance[D]. Xuzhou: China University of Mining and Technology, 2014.(in Chinese)
[16] 田志宏, 张秀华, 田志广, 等. X射线衍射技术在材料分析中的应用[J]. 工程与试验, 2009, 49(3): 40-42. DOI:10.3969/j.issn.1674-3407.2009.03.011.
Tian Z H, Zhang X H, Tian Z G, et al. Application of X-ray diffraction technology in material analysis[J]. Engineering and Test, 2009, 49(3): 40-42. DOI:10.3969/j.issn.1674-3407.2009.03.011. (in Chinese)
[17] Moloney A C, Kausch H H, Kaiser T, et al. Parameters determining the strength and toughness of particulate filled epoxide resins[J]. Journal of Materials Science, 1987, 22(2): 381-393. DOI:10.1007/bf01160743.
[18] 徐峰, 陈彦岭, 刘兰. 涂膜防水材料与应用[M]. 北京: 化学工业出版社, 2007:33-39.
[19] Chen F, Gao J M, Qi B, et al. Deterioration mechanism of plain and blended cement mortars partially exposed to sulfate attack[J]. Construction and Building Materials, 2017, 154: 849-856. DOI:10.1016/j.conbuildmat.2017.08.017.
[20] 杜洪彦, 邱富荣, 林昌健, 等. 混凝土的腐蚀机理与新型防护方法[J]. 腐蚀科学与防护技术, 2001, 13(3): 156-161. DOI:10.3969/j.issn.1002-6495.2001.03.009.
Du H Y,Qiu F R, Lin C J, et al. Corrosion mechanism of concrete and new protection methods[J]. Corrosion Science and Protection Technology, 2001, 13(3): 156-161. DOI:10.3969/j.issn.1002-6495.2001.03.009. (in Chinese)
[21] Haynes H, O’Neill R, Neff M, et al. Salt weathering of concrete by sodium carbonate and sodium chloride[J]. ACI Materials Journal, 2010, 107(3):258-266. DOI:10.14359/51663754.
[22] Selvaraj R, Selvaraj M, Iyer S V K. Studies on the evaluation of the performance of organic coatings used for the prevention of corrosion of steel rebars in concrete structures[J]. Progress in Organic Coatings, 2009, 64(4): 454-459. DOI:10.1016/j.porgcoat.2008.08.005.
[23] 李化建, 易忠来, 谢永江, 等. 混凝土结构表面硅烷浸渍处理技术研究进展[J]. 材料导报, 2012, 26(3): 120-125. DOI:10.3969/j.issn.1005-023X.2012.03.024.
Li H J, Yi Z L,Xie Y J, et al. Progress of silane impregnating surface treatment technology of concrete structure[J]. Materials Review, 2012, 26(3): 120-125. DOI:10.3969/j.issn.1005-023X.2012.03.024. (in Chinese)
[24] Tittarelli F, Moriconi G. The effect of silane-based hydrophobic admixture on corrosion of galvanized reinforcing steel in concrete[J]. Corrosion Science, 2010, 52(9): 2958-2963. DOI:10.1016/j.corsci.2010.05.008.

相似文献/References:

[1]刘志勇,张云升,姜骞,等.原位监测水泥基材料早期电阻率的变化过程[J].东南大学学报(自然科学版),2012,42(2):378.[doi:10.3969/j.issn.1001-0505.2012.02.035]
 Liu Zhiyong,Zhang Yunsheng,Jiang Qian,et al.In-situ monitoring of early-age electrical resistivity change process of cement-based materials[J].Journal of Southeast University (Natural Science Edition),2012,42(6):378.[doi:10.3969/j.issn.1001-0505.2012.02.035]
[2]范玉辉,肖建庄,曹明.再生骨料混凝土徐变特性基础试验[J].东南大学学报(自然科学版),2014,44(3):638.[doi:10.3969/j.issn.1001-0505.2014.03.033]
 Fan Yuhui,Xiao Jianzhuang,Cao Ming.Fundamental test on creep characteristics of recycled aggregate concrete[J].Journal of Southeast University (Natural Science Edition),2014,44(6):638.[doi:10.3969/j.issn.1001-0505.2014.03.033]
[3]张世义,范颖芳,李宁宁.纳米高岭土改性砂浆抗酸雨侵蚀试验研究[J].东南大学学报(自然科学版),2014,44(3):668.[doi:10.3969/j.issn.1001-0505.2014.03.038]
 Zhang Shiyi,Fan Yingfang,Li Ningning.Experimental study on acid resistance of nano-kaolinite modified cement mortar[J].Journal of Southeast University (Natural Science Edition),2014,44(6):668.[doi:10.3969/j.issn.1001-0505.2014.03.038]
[4]张丽辉,刘建忠,阳知乾,等.不同截面形状PP纤维对砂浆抗塑性开裂的影响及机理[J].东南大学学报(自然科学版),2016,46(1):160.[doi:10.3969/j.issn.1001-0505.2016.01.026]
 Zhang Lihui,Liu Jianzhong,Yang Zhiqian,et al.Influences and mechanism of polypropylene fibers with different cross-sections on anti-plastic-cracking of cement mortar[J].Journal of Southeast University (Natural Science Edition),2016,46(6):160.[doi:10.3969/j.issn.1001-0505.2016.01.026]
[5]张艺,钱春香,张旋.微生物自修复砂浆裂缝区溶液理化特征[J].东南大学学报(自然科学版),2020,50(1):101.[doi:10.3969/j.issn.1001-0505.2020.01.014]
 Zhang Yi,Qian Chunxian,Zhang Xuan.Physicochemical characteristics of crack mouth solution in microbial self-healing mortar[J].Journal of Southeast University (Natural Science Edition),2020,50(6):101.[doi:10.3969/j.issn.1001-0505.2020.01.014]

备注/Memo

备注/Memo:
收稿日期: 2019-05-04.
作者简介: 朱健健(1994—),男,硕士生;高建明(联系人),男,博士,教授,博士生导师,jmgao@seu.edu.cn.
基金项目: 国家重点基础研究发展计划(973计划)资助项目(2015CB655100).
引用本文: 朱健健,高建明,陈菲,等.砂浆半浸泡在硫酸钠溶液中不同表面处理材料防护效果比较[J].东南大学学报(自然科学版),2019,49(6):1162-1170. DOI:10.3969/j.issn.1001-0505.2019.06.020.
更新日期/Last Update: 2019-11-20