[1]吴畏,王统伟,汪德成,等.基于Gaussian和LAMMPS模拟的氧化钙脱除氯化氢机理[J].东南大学学报(自然科学版),2020,50(1):1-10.[doi:10.3969/j.issn.1001-0505.2020.01.001]
 Wu Wei,Wang Tongwei,Wang Decheng,et al.Mechanism of HCl removal by CaO based on Gaussian and LAMMPS simulation[J].Journal of Southeast University (Natural Science Edition),2020,50(1):1-10.[doi:10.3969/j.issn.1001-0505.2020.01.001]
点击复制

基于Gaussian和LAMMPS模拟的氧化钙脱除氯化氢机理()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第1期
页码:
1-10
栏目:
环境科学与工程
出版日期:
2020-01-13

文章信息/Info

Title:
Mechanism of HCl removal by CaO based on Gaussian and LAMMPS simulation
作者:
吴畏王统伟汪德成金保昇
东南大学能源与环境学院, 南京 210096; 东南大学能源热转换及其过程测控教育部重点实验室, 南京 210096
Author(s):
Wu Wei Wang Tongwei Wang Decheng Jin Baosheng
School of Energy and Environment, Southeast University, Nanjing 210096, China
Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
关键词:
Gaussian模拟 LAMMPS模拟 氧化钙 氯化氢 机理
Keywords:
Gaussian simulation LAMMPS simulation calcium oxide hydrogen chloride mechanism
分类号:
X701.7
DOI:
10.3969/j.issn.1001-0505.2020.01.001
摘要:
为了揭示氧化钙在中高温阶段脱氯效率降低的机理,采用Gaussian软件研究了氧化钙脱除氯化氢的可能反应路径,并基于主要反应路径上的决速步分析了不同温度条件下的反应平衡常数及反应速率常数.采用LAMMPS软件研究了2个氧化钙颗粒在不同温度下的微观结构变化.结果表明:氧化钙脱除氯化氢的主要反应路径是CaO+HCl→CaClOH,CaClOH+HCl→CaCl2·H2O,CaCl2·H2O→CaCl2+H2O;反应平衡常数随温度升高而减小;反应速率常数随温度升高而增加;当温度在298~700 K之间时,化学反应占主导地位,因此脱氯效率随温度的升高而增加;当温度在700~900 K之间时,氧化钙开始烧结,此时温度的升高可以克服烧结导致的传质阻力的增加,因此脱氯效率仍然呈上升趋势;当温度大于900 K时,氧化钙完全烧结,温度的升高已经无法弥补传质阻力的增加,所以脱氯效率随着温度升高呈下降趋势.
Abstract:
To reveal the mechanism that the dechlorination efficiency of calcium oxide decreased at medium and high temperatures, the possible pathways of the reaction between the hydrogen chloride and the calcium oxide were studied by Gaussian software, and the reaction equilibrium constant and reaction rate constant at different temperatures were calculated based on the rate-determining step of the main reaction pathway. The microstructural changes of two calcium oxide particles at different temperatures were studied by LAMMPS software. The results show that the main pathway of the reaction between the hydrogen chloride and the calcium oxide is CaO+HCl→CaClOH, CaClOH+HCl→CaCl2·H2O, CaCl2·H2O→CaCl2+H2O; the equilibrium constant and the reaction rate constant decrease and increase with the increase of temperatures, respectively;the dechlorination efficiency increases with the increase of temperatures from 298 to 700 K because the chemical reaction is dominated; the calcium oxide begins to sinter in the temperature range of 700 to 900 K, while the dechlorination efficiency was still on the rise. The increasing dechlorination efficiency maybe attributed to the increase of temperatures thus avoiding the increase of the mass transfer resistance caused by sintering. Besides, the decreasing dechlorination efficiency above 900 K is due to the complete sinter of calcium oxide, and as a result, the increase of temperatures cannot unable to compensate the increase of the transfer resistance.

参考文献/References:

[1] Wey M, Fang T. The effect of organic and inorganic chlorides on the formation of HCl with various hydrogen containing sources in a fluidized bed incinerator[J]. Environment International, 1995, 21(4): 423-431. DOI:10.1016/0160-4120(95)00036-k.
[2] Fujita S, Ogawa N, Yamasaki T, et al. A new sorbent,hydrogarnet, with purging HCl gas at high temperature[J]. Chemical Engineering Journal, 2004, 102(1): 99-104. DOI:10.1016/j.cej.2004.01.035.
[3] Fujita S, Suzuki K,Ohkawa M, et al. Reaction of hydrogrossular with hydrogen chloride gas at high temperature[J]. Chemistry of Materials, 2001, 13(8): 2523-2527. DOI:10.1021/cm000863r.
[4] 韩铮. 北方某生活垃圾焚烧厂大气污染防治措施及环境影响分析[D]. 哈尔滨: 哈尔滨工业大学, 2018.
  Han Z. Measures and environmental impact analysis for prevention and control of air pollution in a domestic waste incineration plant in the north[D]. Harbin: Harbin Institute of Technology, 2018.(in Chinese)
[5] 丁卫科, 段钰锋, 张君, 等. 低温等离子改性复合钙基吸附剂烟气脱硫实验研究[J]. 化工进展, 2017, 36(3): 1107-1112. DOI:10.16085/j.issn.1000-6613.2017.03.045.
Ding W K, Duan Y F, Zhang J, et al. Experimental study on desulfurization from flue gas by calcium-based composite sorbent with non-thermal plasma treated[J]. Chemical Industry and Engineering Progress, 2017, 36(3): 1107-1112. DOI:10.16085/j.issn.1000-6613.2017.03.045. (in Chinese)
[6] 白李一, 段钰锋, 丁卫科, 等. 低温等离子强化复合钙基吸附剂脱汞实验研究[J]. 中国环境科学, 2018, 38(4): 1280-1286. DOI:10.19674/j.cnki.issn1000-6923.2018.0151.
Bai L Y, Duan Y F, Ding W K, et al. Experimental study of enhancement of demercuration from flue gas by calcium-based composite sorbent with non-thermal plasma treated[J]. China Environmental Science, 2018, 38(4): 1280-1286. DOI:10.19674/j.cnki.issn1000-6923.2018.0151. (in Chinese)
[7] Addink R, Bakker W C M, Olie K. Influence of HCl and Cl2 on the formation of polychlorinated dibenzo-p-dioxins/dibenzofurans in a carbon/fly ash mixture[J]. Environmental Science & Technology, 1995, 29(8): 2055-2058. DOI:10.1021/es00008a026.
[8] Chyang C, Han Y L, Zhong Z C. Study of HCl absorption by CaO at high temperature[J]. Energy & Fuels, 2009, 23(8): 3948-3953. DOI:10.1021/ef900234p.
[9] Daoudi M, Walters J K. A thermogravimetric study of the reaction of hydrogen chloride gas with calcined limestone: Determination of kinetic parameters[J]. The Chemical Engineering Journal, 1991, 47(1): 1-9. DOI:10.1016/0300-9467(91)85001-c.
[10] Daoudi M, Walters J K. The reaction of HCl gas with calcined commercial limestone particles: The effect of particle size[J]. The Chemical Engineering Journal, 1991, 47(1): 11-16. DOI:10.1016/0300-9467(91)85002-d.
[11] 王蕊. 氧化钙干法增湿法脱除HCl的机理研究[J]. 工程热物理学报, 2013, 34(3): 554-557.
  Wang R. The reaction mechanism of HCl removal by CaO dry process with humidification[J]. Journal of Engineering Thermophysics, 2013, 34(3): 554-557.(in Chinese)
[12] 王婷, 金保昇, 裴海鹏, 等. 稻秸成型燃料流化床气化炉内CaO脱氯实验研究[J]. 化工进展, 2017, 36(3): 893-899. DOI:10.16085/j.issn.1000-6613.2017.03.017.
Wang T, Jin B S, Pei H P, et al. Experimental study on the CaO dechlorination in the rice straw briquette fluidized-bed gasifier[J]. Chemical Industry and Engineering Progress, 2017, 36(3): 893-899. DOI:10.16085/j.issn.1000-6613.2017.03.017. (in Chinese)
[13] 刘金生, 陈江. 典型村镇垃圾燃烧、脱氯特性及机理研究[J]. 当代化工, 2011, 40(4): 336-339. DOI:10.13840/j.cnki.cn21-1457/tq.2011.04.032.
Liu J S, Chen J. Experimental study on combustion and dechlorination of village solid waste[J]. Contemporary Chemical Industry, 2011, 40(4): 336-339. DOI:10.13840/j.cnki.cn21-1457/tq.2011.04.032. (in Chinese)
[14] Shemwell B, Levendis Y A, Simons G A. Laboratory study on the high-temperature capture of HCl gas by dry-injection of calcium-based sorbents[J]. Chemosphere, 2001, 42(5/6/7): 785-796. DOI:10.1016/s0045-6535(00)00252-6.
[15] Zhao Z, Wang D, Wang Q, et al. Quantum chemical study on thermal decomposition mechanism of calcium carbonate[J]. Journal of Theoretical and Computational Chemistry, 2013, 12(6): 1350049. DOI:10.1142/s0219633613500491.
[16] Bian H, Xu B, Zhang H H, et al. Theoretical study on the atmospheric reaction of CH3SH with O2[J]. International Journal of Quantum Chemistry, 2019, 119(5): e25822. DOI:10.1002/qua.25822.
[17] Xu C, Wang C Y, Li B, et al. Theoretical study on the reaction mechanism of OH radical with Z(E)-CF3CH CHF[J]. Physical Chemistry Chemical Physics, 2019, 21(3): 1367-1374. DOI:10.1039/c8cp06647g.
[18] Hu H Y, Dibble T S. Quantum chemistry, reaction kinetics, and tunneling effects in the reaction of methoxy radicals with O2[J]. The Journal of Physical Chemistry A, 2013, 117(51): 14230-14242. DOI:10.1021/jp409105q.
[19] Zhang L Z, Lu Y Q, Rostam-Abadi M. Sintering of calcium oxide(CaO)during CO2 chemisorption: A reactive molecular dynamics study[J]. Physical Chemistry Chemical Physics, 2012, 14(48): 16633. DOI:10.1039/c2cp42209c.
[20] Wang N N, Feng Y C, Guo X, et al. Insights into the role of H2O in the carbonation of CaO nanoparticle with CO2[J]. The Journal of Physical Chemistry C, 2018, 122(37): 21401-21410. DOI:10.1021/acs.jpcc.8b05517.
[21] Han S S, Choi S, van Duin A C T. Molecular dynamics simulations of stability of metal-organic frameworks against H2O using the ReaxFF reactive force field[J]. Chemical Communications, 2010, 46(31): 5713. DOI:10.1039/c0cc01132k.
[22] Lu X, Wang X L, Li Q M, et al. A ReaxFF-based molecular dynamics study of the pyrolysis mechanism of polyimide[J]. Polymer Degradation and Stability, 2015, 114: 72-80. DOI:10.1016/j.polymdegradstab.2015.02.004.
[23] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09, Revision D.01[R]. Wallingford, CT, USA:Gaussian, Inc., 2013.
[24] Gonzalez C, Schlegel H B. Reaction path following in mass-weighted internal coordinates[J]. The Journal of Physical Chemistry, 1990, 94(14): 5523-5527. DOI:10.1021/j100377a021.
[25] Lu T, Chen F W. Multiwfn: A multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592. DOI:10.1002/jcc.22885.
[26] 卢天, 陈沁雪. 通过价层电子密度分析展现分子电子结构[J]. 物理化学学报, 2018, 34(5): 503-513.
  Lu T, Chen Q X. Revealing molecular electronic structure via analysis of valence electron density[J]. Acta Physico-Chimica Sinica, 2018, 34(5): 503-513.(in Chinese)
[27] Niu W X, Zhang H, Li P, et al. Gas-phase ammonia activation by Th, Th+, and Th2+: Reaction mechanisms, bonding analysis, and rate constant calculations[J]. International Journal of Quantum Chemistry, 2015, 115(1): 6-18. DOI:10.1002/qua.24753.
[28] Eyring H. The activated complex and the absolute rate of chemical reactions[J]. Chemical Reviews, 1935, 17(1): 65-77. DOI:10.1021/cr60056a006.
[29] Wigner E.Über das überschreiten von potentialschwellen bei chemischen reaktionen[J]. Zeitschrift Für Physikalische Chemie, 1932, 19B(1): 203-216. DOI:10.1515/zpch-1932-1920.
[30] Gullett B K, Jozewicz W, Stefanski L A. Reaction kinetics of calcium-based sorbents with hydrogen chloride[J]. Industrial & Engineering Chemistry Research, 1992, 31(11): 2437-2446. DOI:10.1021/ie00011a005.
[31] Li M S, Shaw H, Yang C L. Reaction kinetics of hydrogen chloride with calcium oxide by Fourier transform infrared spectroscopy[J]. Industrial & Engineering Chemistry Research, 2000, 39(6): 1898-1902. DOI:10.1021/ie990628m.
[32] Mura G,Lallai A. On the kinetics of dry reaction between calcium oxide and gas hydrochloric acid[J]. Chemical Engineering Science, 1992, 47(9/10/11): 2407-2411. DOI:10.1016/0009-2509(92)87068-2.
[33] 万旦. 高温下氧化钙脱除氯化氢研究[D]. 武汉: 华中科技大学, 2013.
  WanD. Study of HCI absorption by CaO at high temperature[D]. Wuhan: Huazhong University of Science and Technology, 2013.(in Chinese)
[34] Chenoweth K,van Duin A C T, Goddard W A. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation[J]. The Journal of Physical Chemistry A, 2008, 112(5): 1040-1053. DOI:10.1021/jp709896w.
[35] van Duin A C T, Dasgupta S, Lorant F, et al. ReaxFF: A reactive force field for hydrocarbons[J]. The Journal of Physical Chemistry A, 2001, 105(41): 9396-9409. DOI:10.1021/jp004368u.
[36] Psofogiannakis G M, McCleerey J F, Jaramillo E, et al. ReaxFF reactive molecular dynamics simulation of the hydration of Cu-SSZ-13 zeolite and the formation of Cu dimers[J]. The Journal of Physical Chemistry C, 2015, 119(12): 6678-6686. DOI:10.1021/acs.jpcc.5b00699.
[37] 王蕊, 王贵全, 田君国, 等. 水蒸气存在下氧化钙脱氯性能的实验研究[J]. 工程热物理学报, 2010, 31(3): 519-522.
  Wang R, Wang G Q, Tian J G, et al. An experimental investigation on the effect of steam to hcl removal capability by CaO[J]. Journal of Engineering Thermophysics, 2010, 31(3): 519-522.(in Chinese)
[38] Duo W, Kirkby N F, Seville J P K, et al. Kinetics of HCl reactions with calcium and sodium sorbents for IGCC fuel gas cleaning[J]. Chemical Engineering Science, 1996, 51(11): 2541-2546. DOI:10.1016/0009-2509(96)00111-x.
[39] Weinell C E, Jensen P I, Dam-Johansen K, et al. Hydrogen chloride reaction with lime and limestone: Kinetics and sorption capacity[J]. Industrial & Engineering Chemistry Research, 1992, 31(1): 164-171. DOI:10.1021/ie00001a023.
[40] 王恺, 钟文琪, 曹俊, 等. CaO中高温脱除HCl的特性试验研究[J]. 东南大学学报(自然科学版), 2014, 44(3): 591-597.
  Wang K, Zhong W Q, Cao J, et al. Experimental study on HCl removal characteristics over CaO at moderate and high temperature[J]. Journal of Southeast University(Natural Science Edition), 2014, 44(3): 591-597.(in Chinese)
[41] 曹俊, 王志飞, 钟文琪, 等. 类水滑石与常规吸附剂中高温脱除HCl实验研究[J]. 东南大学学报(自然科学版), 2014, 44(5): 963-967.
  Cao J, Wang Z F, Zhong W Q, et al. Study on removal of HCl from flue gas at medium-high temperature[J]. Journal of Southeast University(Natural Science Edition), 2014, 44(5): 963-967.(in Chinese)

备注/Memo

备注/Memo:
收稿日期: 2019-07-10.
作者简介: 吴畏(1991—),男,博士生;金保昇(联系人),男,教授,博士生导师,bsjin@seu.edu.cn.
基金项目: 国家重点研发计划资助项目(2018YFC1901200).
引用本文: 吴畏,王统伟,汪德成,等.基于Gaussian和LAMMPS模拟的氧化钙脱除氯化氢机理[J].东南大学学报(自然科学版),2020,50(1):1-10. DOI:10.3969/j.issn.1001-0505.2020.01.001.
更新日期/Last Update: 2020-01-20