[1]薛嘉哲,钟文琪,邵应娟,等.固定/鼓泡床中煤沥青球升温过程的CFD-DEM模拟[J].东南大学学报(自然科学版),2020,50(1):11-19.[doi:10.3969/j.issn.1001-0505.2020.01.002]
 Xue Jiazhe,Zhong Wenqi,Shao Yingjuan,et al.CFD-DEM investigation of heating process of coal tar pitch in packed and bubbling fluidized beds[J].Journal of Southeast University (Natural Science Edition),2020,50(1):11-19.[doi:10.3969/j.issn.1001-0505.2020.01.002]
点击复制

固定/鼓泡床中煤沥青球升温过程的CFD-DEM模拟()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第1期
页码:
11-19
栏目:
化学化工
出版日期:
2020-01-13

文章信息/Info

Title:
CFD-DEM investigation of heating process of coal tar pitch in packed and bubbling fluidized beds
作者:
薛嘉哲1钟文琪1邵应娟1谢立宇1李开喜2
1东南大学能源热转换及其过程测控教育部重点实验室, 南京 210096; 2中国科学院山西煤炭化学研究所, 太原 030001
Author(s):
Xue Jiazhe1 Zhong Wenqi1 Shao Yingjuan 1 Xie Liyu1 Li Kaixi2
1 Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
2 Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
关键词:
煤沥青球 升温 CFD-DEM 床型结构
Keywords:
coal pitch spheres heating (CFD-DEM)computational fluid dynamics-discrete element method bed structure
分类号:
TQ424.1;TQ522.65
DOI:
10.3969/j.issn.1001-0505.2020.01.002
摘要:
为掌握煤沥青球在不同床型结构下的升温规律,采用三维CFD-DEM耦合传热的数值模拟方法,对实验室尺度固定床和鼓泡床内的煤沥青球升温过程展开研究,获得了不同流型(固定床/鼓泡床)、高径比、厚宽比下床层内的气固流动及传热结构、气固对流传热强度、床层升温速率及温度均匀性信息.结果表明,相较于固定床,使用鼓泡床能够有效避免局部高温区域的形成;当床层高径比提升至0.95以上时,对鼓泡床温升的影响较小;跟踪颗粒在床层上方受到空气冷却的时间随高径比的增加而增加,从而导致其出现更大的温降;壁面效应随宽厚比的增加而逐渐减弱,气泡上升速度、颗粒动能均有所增加,使得床层颗粒的内循环速率加快,床层底部气固温差增大,床层颗粒升温速率提升约24.2%.
Abstract:
To grasp the heating characteristics of coal pitch spheres in different bed structures, a 3D model for computational fluid dynamics-discrete element method(CFD-DEM)with coupled heat transfer was adopted to investigate the gas-solid flow and heat transfer characteristics in packed and bubbling fluidized beds. The following results were obtained: gas-solid flow and heat transfer structure, convective heat transfer intensity, heating rate and temperature uniformity under different flow regimes, the ratio of height to diameter, and the ratio of thickness to width. The results show that avoiding the local high-temperature particle region is less formed in bubbling fluidized beds compared with that in packed beds. When the ratio of height to diameter is greater than 0.95, it has little effect on the temperature rise of particles in the bubbling fluidized bed. The cooling time of the tracking particles in upper region increases with the increasing ratio of height to diameter, resulting in a larger temperature drop. The wall effect gradually decreases with the increase of the ratio of width to thickness, the rising velocity of bubbles and the kinetic energy of particles both increase, making the internal circulation rate of bed particles accelerate, the gas-solid temperature difference at the bottom of bed increases, and the heating rate of bed particles increases by about 24.2%.

参考文献/References:

[1] 郭源, 邵应娟, 钟文琪, 等. 煤沥青球的氧化不熔化过程特性[J]. 化工学报, 2018, 69(1): 499-506,2.
  Guo Y, Shao Y J, Zhong W Q, et al. Characteristics of oxidation stabilization process of coal pitch based spheres[J]. CIESC Journal, 2018, 69(1): 499-506, 2.(in Chinese)
[2] 王永邦, 刘小军, 李泽斯, 等. 沥青球在流化床反应器中氧化不熔化及后续炭化行为的研究[J]. 炭素技术, 2010, 29(6): 5-8, 12. DOI:10.14078/j.cnki.1001-3741.2010.06.009.
Wang Y B, Liu X J, Li Z S, et al. Oxidative stabilization of pitch spheres in fluidized bed and their carbonization behavior[J]. Carbon Techniques, 2010, 29(6): 5-8, 12. DOI:10.14078/j.cnki.1001-3741.2010.06.009. (in Chinese)
[3] 金涌, 祝京旭, 汪展文, 等. 流态化工程原理[M]. 北京:清华大学出版社, 2001:399-400.
[4] 郭慕孙, 李洪钟. 流态化手册[M]. 北京: 化学工业出版社, 2008:897-898.
[5] 王永邦. 沥青球的流态化氧化行为研究[D]. 上海: 华东理工大学, 2011.
  Wang Y B. Study on oxidative stabilization of pitch spheres in fluidized bed reactor[D]. Shanghai: East China University of Science and Technology, 2011.(in Chinese)
[6] Hou Q F, Zhou Z Y, Yu A B. Computational study of the effects of material properties on heat transfer in gas fluidization[J]. Industrial & Engineering Chemistry Research, 2012, 51(35): 11572-11586. DOI:10.1021/ie3015999.
[7] Zhou Z Y, Yu A B, Zulli P. Particle scale study of heat transfer in packed and bubbling fluidized beds[J]. AIChE Journal, 2009, 55(4): 868-884. DOI:10.1002/aic.11823.
[8] Norouzi H R, Mostoufi N, Mansourpour Z, et al. Characterization of solids mixing patterns in bubbling fluidized beds[J]. Chemical Engineering Research and Design, 2011, 89(6): 817-826. DOI:10.1016/j.cherd.2010.10.014.
[9] Kuang S B, Yu A B, Zou Z S. Computational study of flow regimes in vertical pneumatic conveying[J]. Industrial & Engineering Chemistry Research, 2009, 48(14): 6846-6858. DOI:10.1021/ie900230s.
[10] 樊建人, 岑可法. 工程气固多相流动的理论及计算[M]. 杭州:浙江大学出版社, 1990:320-335.
[11] Ren B, Zhong W, Jin B, et al. Modeling of gas-particle turbulent flow in spout-fluid bed by computational fluid dynamics with discrete element method[J]. Chemical Engineering & Technology, 2011, 34(12): 2059-2068. DOI:10.1002/ceat.201100338.
[12] Wahyudi H, Chu K W, Yu A B. 3D particle-scale modeling of gas-solids flow and heat transfer in fluidized beds with an immersed tube[J]. International Journal of Heat and Mass Transfer, 2016, 97: 521-537. DOI:10.1016/j.ijheatmasstransfer.2016.02.038.
[13] Zhao Y Z, Jiang M Q, Liu Y L, et al. Particle-scale simulation of the flow and heat transfer behaviors in fluidized bed with immersed tube[J]. AIChE Journal, 2009, 55(12): 3109-3124. DOI:10.1002/aic.11956.
[14] Ren B, Zhong W Q, Jin B S, et al. Computational fluid dynamics(CFD )-discrete element method(DEM)simulation of gas-solid turbulent flow in a cylindrical spouted bed with a conical base[J]. Energy & Fuels, 2011, 25(9): 4095-4105. DOI:10.1021/ef200808v.
[15] Zhong W Q, Yu A B, Zhou G W, et al. CFD simulation of dense particulate reaction system: Approaches, recent advances and applications[J]. Chemical Engineering Science, 2016, 140: 16-43. DOI:10.1016/j.ces.2015.09.035.
[16] Gidaspow D. Multiphase flow and fluidization: Continuum and kinetic theory descriptions[M]. New York:Academic Press, 1994:327-340.
[17] Lu L Q, Morris A, Li T W, et al. Extension of a coarse grained particle method to simulate heat transfer in fluidized beds[J]. International Journal of Heat and Mass Transfer, 2017, 111: 723-735. DOI:10.1016/j.ijheatmasstransfer.2017.04.040.
[18] Ngoh J, Lim E W C. Effects of particle size and bubbling behavior on heat transfer in gas fluidized beds[J]. Applied Thermal Engineering, 2016, 105: 225-242. DOI:10.1016/j.applthermaleng.2016.05.165.
[19] Wu H, Gui N, Yang X T, et al. Numerical simulation of heat transfer in packed pebble beds: CFD-DEM coupled with particle thermal radiation[J]. International Journal of Heat and Mass Transfer, 2017, 110: 393-405. DOI:10.1016/j.ijheatmasstransfer.2017.03.035.
[20] Hou Q F, Zhou Z Y, Yu A B. Computational study of heat transfer in a bubbling fluidized bed with a horizontal tube[J]. AIChE Journal, 2012, 58(5): 1422-1434. DOI:10.1002/aic.12700.
[21] Chaudhuri B, Muzzio F J, Tomassone M S. Modeling of heat transfer in granular flow in rotating vessels[J]. Chemical Engineering Science, 2006, 61(19): 6348-6360. DOI:10.1016/j.ces.2006.05.034.
[22] Li J, Mason D J. A computational investigation of transient heat transfer in pneumatic transport of granular particles[J]. Powder Technology, 2000, 112(3): 273-282. DOI:10.1016/s0032-5910(00)00302-8.
[23] Xie J, Zhong W Q, Shao Y J, et al. Modeling of oxidation process of coal tar pitch in rotating kilns[J]. Mathematical Problems in Engineering, 2019, 2019: 1-21. DOI:10.1155/2019/1953156.
[24] Ergun S. Fluid flow through packed columns[J]. Chemical Engineering Progress, 1952,48(2):89-94.
[25] Xu H B, Zhong W Q, Yuan Z L, et al. CFD-DEM study on cohesive particles in a spouted bed[J]. Powder Technology, 2017, 314: 377-386. DOI:10.1016/j.powtec.2016.09.006.
[26] Patil A V, Peters E A J F, Sutkar V S, et al. A study of heat transfer in fluidized beds using an integrated DIA/PIV/IR technique[J]. Chemical Engineering Journal, 2015, 259: 90-106. DOI:10.1016/j.cej.2014.07.107.
[27] Collier A P, Hayhurst A N, Richardson J L, et al. The heat transfer coefficient between a particle and a bed(packed or fluidised)of much larger particles[J]. Chemical Engineering Science, 2004, 59(21): 4613-4620. DOI:10.1016/j.ces.2004.07.029.
[28] Wang S, Luo K, Hu C S, et al. CFD-DEM simulation of heat transfer in fluidized beds: Model verification, validation, and application[J]. Chemical Engineering Science, 2019, 197: 280-295. DOI:10.1016/j.ces.2018.12.031.
[29] Patil A V, Peters E A J F, Kuipers J A M. Comparison of CFD-DEM heat transfer simulations with infrared/visual measurements[J]. Chemical Engineering Journal, 2015, 277: 388-401. DOI:10.1016/j.cej.2015.04.131.
[30] Wei G C, Zhang H, An X Z, et al. CFD-DEM study on heat transfer characteristics and microstructure of the blast furnace raceway with ellipsoidal particles[J]. Powder Technology, 2019, 346: 350-362. DOI:10.1016/j.powtec.2019.02.022.
[31] Kettenring K N, Manderfield E L, Smith J M. Heat and mass transfer in fluidized systems[J]. Chemical Engineering Progress, 1950,46:139-145.
[32] Davidson J F, Harrison D. Fluidization[M]. London:Academic Press, 1971:782-790.
[33] Geldart D. The size and frequency of bubbles in two-and three-dimensional gas-fluidised beds[J]. Powder Technology, 1970, 4(1): 41-55. DOI:10.1016/0032-5910(70)80007-9.
[34] Lyczkowski R W, Bouillard J X, Gamwo I K, et al. Experimental and CFD analyses of bubble parameters in a variable-thickness fluidized bed[J]. Industrial & Engineering Chemistry Research, 2010, 49(11): 5166-5173. DOI:10.1021/ie901294e.
[35] Glicksman L R, McAndrews G. The effect of bed width on the hydrodynamics of large particle fluidized beds[J]. Powder Technology, 1985, 42(2): 159-167. DOI:10.1016/0032-5910(85)80049-8.

备注/Memo

备注/Memo:
收稿日期: 2019-06-16.
作者简介: 薛嘉哲(1996—),男,硕士生;邵应娟(联系人),女,博士,副教授,博士生导师,yjshao@seu.edu.cn.
基金项目: NSFC-山西煤基低碳联合基金重点支持项目(U1510204).
引用本文: 薛嘉哲,钟文琪,邵应娟,等.固定/鼓泡床中煤沥青球升温过程的CFD-DEM模拟[J].东南大学学报(自然科学版),2020,50(1):11-19. DOI:10.3969/j.issn.1001-0505.2020.01.002.
更新日期/Last Update: 2020-01-20