[1]练萌,顾兵.单轴晶体中杂化偏振矢量涡旋光场的传输特性[J].东南大学学报(自然科学版),2020,50(1):33-38.[doi:10.3969/j.issn.1001-0505.2020.01.005]
 Lian Meng,Gu Bing.Propagation properties of hybridly polarized vector vortex fields in uniaxial crystals[J].Journal of Southeast University (Natural Science Edition),2020,50(1):33-38.[doi:10.3969/j.issn.1001-0505.2020.01.005]
点击复制

单轴晶体中杂化偏振矢量涡旋光场的传输特性()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第1期
页码:
33-38
栏目:
数学、物理学、力学
出版日期:
2020-01-13

文章信息/Info

Title:
Propagation properties of hybridly polarized vector vortex fields in uniaxial crystals
作者:
练萌1顾兵2
1 东南大学移动通信国家重点实验室, 南京 210096; 2 东南大学先进光子学中心, 南京 210096
Author(s):
Lian Meng1 Gu Bing2
1National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China
2Advanced Photonics Center, Southeast University, Nanjing 210096, China
关键词:
杂化偏振矢量光场 单轴晶体 偏振旋转 传输特性 涡旋相位
Keywords:
hybridly polarized vector field uniaxial crystal polarization rotation propagation properties vortex phase
分类号:
O436
DOI:
10.3969/j.issn.1001-0505.2020.01.005
摘要:
为了实现光场的偏振态调控,对拥有复杂偏振态分布的杂化偏振矢量涡旋光场在单轴晶体中垂直于光轴的传输特性展开研究.基于光束在各向异性单轴晶体中的傍轴矢量传输理论,推导出杂化偏振矢量涡旋光场在单轴晶体中传输的具体表达式.通过数值模拟,得出了不同参数下杂化偏振矢量涡旋光场在单轴晶体中传输的演变规律.结果表明,光束半径、传输距离以及单轴晶体的e光和o光折射率比值对杂化偏振矢量涡旋光场在单轴晶体中的强度分布、偏振态分布、自旋角动量分布以及涡旋相位分布有调节作用.光束半径越小,传输距离越大,单轴晶体的各向异性强度越大,则对杂化偏振矢量涡旋光场的传输特性影响越大.
Abstract:
To realize the manipulation of the polarization states of the light field, the propagation properties of hybridly polarized vector vortex fields with complicated polarization states in a uniaxial crystal whose optical axis was orthogonal to the beam axis were investigated. Based on the theory of the paraxial vector propagation of light beams in anisotropic uniaxial crystals, the exact expressions of the hybridly polarized vector vortex fields propagating in a uniaxial crystal were derived. By numerical simulations, the evolution law of hybridly polarized vector vortex fields propagating in the uniaxial crystal under different influence factors was obtained. The results show that the beam radius, the propagation distance in the crystal, and the refractive index ratio of e light to o light have effects on the distributions of the intensity patterns, the states of polarization, the spin angular momentum and vortex phase of hybridly polarized vector vortex fields in uniaxial crystals. The smaller the beam radius, the greater the propagation distance and the greater the anisotropic intensity of the uniaxial crystal, the greater the influence on the propagation properties of the hybrid polarization vector vortex field.

参考文献/References:

[1] Born M, Wolf E.Principles of optics[M]. Pergamon, Oxford, UK, 1999:840-849.
[2] Chekhov A L,Razdolski I, Kirilyuk A, et al. Surface plasmon-driven second-harmonic generation asymmetry in anisotropic plasmonic crystals[J]. Physical Review B, 2016, 93(16): 161405. DOI:10.1103/physrevb.93.161405.
[3] Khonina S N, Karpeev S V, Alferov S V, et al. Generation of cylindrical vector beams of high orders using uniaxial crystals[J]. Journal of Optics, 2015, 17(6): 065001. DOI:10.1088/2040-8978/17/6/065001.
[4] Ciattoni A, Cincotti G, Provenziani D, et al. Paraxial propagation along the optical axis of a uniaxial medium[J]. Physical Review E, 2002, 66(3 Pt 2B): 036614. DOI:10.1103/PhysRevE.66.036614.
[5] Ciattoni A, Palma C. Optical propagation in uniaxial crystals orthogonal to the optical axis: Paraxial theory and beyond[J]. Journal of the Optical Society of America A, 2003, 20(11): 2163-2171. DOI:10.1364/josaa.20.002163.
[6] Wróbel P, Pniewski J, Antosiewicz T J, et al. Focusing radially polarized light by a concentrically corrugated silver film without a hole[J]. Physical Review Letters, 2009, 102(18): 183902. DOI:10.1103/physrevlett.102.183902.
[7] Hnatovsky C, Shvedov V, Krolikowski W, et al. Revealing local field structure of focused ultrashort pulses[J]. Physical Review Letters, 2011, 106(12): 123901. DOI:10.1103/physrevlett.106.123901.
[8] Bautista G,Huttunen M J, Mäkitalo J, et al. Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams[J]. Nano Letters, 2012, 12(6): 3207-3212. DOI:10.1021/nl301190x.
[9] Cincotti G, Ciattoni A, Sapia C. Radially and azimuthally polarized vortices in uniaxial crystals[J]. Optics Communications, 2003, 220(1/2/3): 33-40. DOI:10.1016/s0030-4018(03)01372-5.
[10] Li J, Chen Y R, Cao Q J. Propagation properties of cylindrically polarized vector beam through uniaxial crystals along the optical axis[J]. Optics & Laser Technology, 2013, 45: 364-372. DOI:10.1016/j.optlastec.2012.06.022.
[11] Li J, Chen Y,Hua J. Paraxial propagation of cylindrically polarized vectorial beam through uniaxial crystals orthogonal to the optical axis[J]. The European Physical Journal Applied Physics, 2012, 59(1): 10501. DOI:10.1051/epjap/2012120058.
[12] Zhou Y M, Wang X G, Dai C Q, et al.Nonparaxial analysis in the propagation of a cylindrical vector Laguerre-Gaussian beam in a uniaxial crystal orthogonal to the optical axis[J]. Optics Communications, 2013, 305: 113-125. DOI:10.1016/j.optcom.2013.04.074.
[13] Shvedov V G, Hnatovsky C, Shostka N, et al. Generation of vector bottle beams with a uniaxial crystal[J]. Journal of the Optical Society of America B, 2013, 30(1): 1-6. DOI:10.1364/josab.30.000001.
[14] Lian M, Gu B, Zhang Y D, et al. Polarization rotation of hybridly polarized beams in a uniaxial crystal orthogonal to the optical axis: Theory and experiment[J]. Journal of the Optical Society of America A, 2017, 34(1): 2526-2531. DOI:10.1364/josaa.34.002526.
[15] 亚里夫 A, 叶P. 晶体中的光波: 激光的传播与控制[M]. 北京: 科学出版社, 1991:58-60.
[16] Ciattoni A, Crosignani B, di Porto P. Vectorial theory of propagation in uniaxially anisotropic media[J]. Journal of the Optical Society of America A, 2001, 18(7): 1656-1661. DOI:10.1364/josaa.18.001656.
[17] Wang X L, Li Y N,Chen J, et al. A new type of vector fields with hybrid states of polarization[J]. Optics Express, 2010, 18(10): 10786-10795. DOI:10.1364/oe.18.010786.

备注/Memo

备注/Memo:
收稿日期: 2019-05-14.
作者简介: 练萌(1992—),女,硕士;顾兵(联系人),男,博士,教授,博士生导师,gubing@seu.edu.cn.
引用本文: 练萌,顾兵.单轴晶体中杂化偏振矢量涡旋光场的传输特性[J].东南大学学报(自然科学版),2020,50(1):33-38. DOI:10.3969/j.issn.1001-0505.2020.01.005.
更新日期/Last Update: 2020-01-20