[1]张艺,钱春香,张旋.微生物自修复砂浆裂缝区溶液理化特征[J].东南大学学报(自然科学版),2020,50(1):101-108.[doi:10.3969/j.issn.1001-0505.2020.01.014]
 Zhang Yi,Qian Chunxian,Zhang Xuan.Physicochemical characteristics of crack mouth solution in microbial self-healing mortar[J].Journal of Southeast University (Natural Science Edition),2020,50(1):101-108.[doi:10.3969/j.issn.1001-0505.2020.01.014]
点击复制

微生物自修复砂浆裂缝区溶液理化特征()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第1期
页码:
101-108
栏目:
材料科学与工程
出版日期:
2020-01-13

文章信息/Info

Title:
Physicochemical characteristics of crack mouth solution in microbial self-healing mortar
作者:
张艺钱春香张旋
东南大学材料科学与工程学院, 南京 211189; 东南大学绿色建材技术研究所, 南京 211189
Author(s):
Zhang Yi Qian Chunxian Zhang Xuan
School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
Research Institute of Green Construction Materials, Southeast University, Nanjing 211189, China
关键词:
微生物自修复 砂浆 浅层修复 裂缝开口 理化特征
Keywords:
microbial self-healing mortar shallow repair crack mouth opening physicochemical characteristics
分类号:
TU526
DOI:
10.3969/j.issn.1001-0505.2020.01.014
摘要:
针对微生物自修复水泥基材料仅浅层修复的问题,探究裂缝宽度、开裂龄期和裂缝深度对裂缝区溶液理化参数的影响,解释浅层修复的原因.通过pH试纸和pH计测得裂缝区溶液的pH值,通过钙离子计和EDTA滴定测得裂缝区溶液的Ca2+浓度,通过酶标仪测得裂缝区溶液的碳酸根离子浓度,从而确定裂缝区溶液理化特征.结果表明:在密闭环境下,裂缝区溶液pH值均在13.3左右;试件开裂龄期由3 d增至56 d,裂缝区溶液Ca2+浓度由140 mg/L逐渐增至350 mg/L.在大气环境下,裂缝区溶液表层3 mm内pH值相对较低,沿裂缝深度方向先增加后稳定(pH值在13.2左右);裂缝区溶液Ca2+浓度沿裂缝深度方向先增加后趋于稳定;裂缝区溶液CO2-3浓度沿裂缝深度方向先降低后稳定至1.5 g/L左右;裂缝区加入微生物后,表层CO2-3浓度有所增加,深度方向CO2-3浓度无显著提升.裂缝深处CO2-3浓度较低是导致裂缝区修复较浅的主要原因.由SEM和XRD可知,裂缝区矿化产物主要是方解石型碳酸钙,微生物作用下的矿化产物呈凝胶状且具有一定的黏结性.
Abstract:
Aiming at the problem of only shallow layer repair of microbial self-repairing cement-based materials, the effects of crack width, cracking age and crack depth on the physicochemical characteristics of the crack mouth solution were explored, and the reasons for shallow repair were explained. The pH value of the crack mouth solution was measured by pH test paper and pH meter. The determination of Ca2+ concentration in the solution was achieved by a calcium ion meter and an ethylene diamine tetraacetic acid(EDTA)titration method. And the CO2-3 concentration of the solution was measured by a micro-plate reader. Thus, physicochemical characteristics of the crack mouth solution in microbial self-healing cement-based materials were determined. The results show that in the closed environment, the pH value in the crack mouth solution is about 13.3; with the cracking age of the specimen increased from 3 to 56 d, the Ca2+ concentration in the crack mouth solution gradually increases from 140 to 350 mg/L. In the atmospheric environment, the pH value of the surface layer 3mm crack mouth solution is relatively low, and gradually increases along the depth of the crack, and then stabilizes at about 13.2; the Ca2+ concentration in the crack mouth gradually increases along the depth direction and tends to be stable; the CO2-3 concentration in the crack mouth solution gradually decreases in the depth direction and tends to be stabilized at about 1.5 g/L. After the addition of microorganisms in the crack mouth solution, the CO2-3 concentration in the surface layer increases, and the CO2-3 concentration in the depth direction does not increase significantly. The lower concentration of carbonate ions in the depth of the crack is the main cause of the shallow repair of the crack mouth. It can be seen from SEM and XRD that the mineralized product is mainly calcium carbonate in calcite-type in the crack mouth solution and the mineralized product under the action of microorganisms is gelatinous and has certain cohesiveness.

参考文献/References:

[1] van Tittelboom K, Gruyaert E, Rahier H, et al. Influence of mix composition on the extent of autogenous crack healing by continued hydration or calcium carbonate formation[J]. Construction and Building Materials, 2012, 37:349-359. DOI:10.1016/j.conbuildmat.2012.07.026.
[2] Wang J Y, van Tittelboom K, de Belie N, et al. Use of silica gel or polyurethane immobilized Bacteria for self-healing concrete[J]. Construction and Building Materials, 2012, 26(1):532-540. DOI:10.1016/j.conbuildmat.2011.06.054.
[3] Chen H C, Qian C X, Huang H L. Self-healing cementitious materials based on Bacteria and nutrients immobilized respectively[J]. Construction and Building Materials, 2016, 126:297-303. DOI:10.1016/j.conbuildmat.2016.09.023.
[4] 罗勉. 基于微生物矿化的自修复水泥基材料性能及微观结构[D]. 南京:东南大学, 2017.
  Luo M. Properties and microstructure of self-healing cement-based materials by microbial mineralization[D]. Nanjing:Southeast University, 2017.(in Chinese)
[5] Bhaskar S, Anwar Hossain K M, Lachemi M, et al. Effect of self-healing on strength and durability of zeolite-immobilized bacterial cementitious mortar composites[J]. Cement and Concrete Composites, 2017, 82:23-33. DOI:10.1016/j.cemconcomp.2017.05.013.
[6] Zhang J G, Liu Y Z, Feng T, et al. Immobilizing Bacteria in expanded perlite for the crack self-healing in concrete[J]. Construction and Building Materials, 2017, 148:610-617. DOI:10.1016/j.conbuildmat.2017.05.021.
[7] Ersan Y Ç, Hernandez-Sanabria E, Boon N, et al. Enhanced crack closure performance of microbial mortar through nitrate reduction[J]. Cement and Concrete Composites, 2016, 70:159-170. DOI:10.1016/j.cemconcomp.2016.04.001.
[8] Dong B Q, Han N X, Zhang M, et al. A microcapsule technology based self-healing system for concrete structures[J]. Journal of Earthquake and Tsunami, 2013, 7(3):1350014. DOI:10.1142/s1793431113500140.
[9] Wang J Y, Snoeck D, van Vlierberghe S, et al. Application of hydrogel encapsulated carbonate precipitating Bacteria for approaching a realistic self-healing in concrete[J]. Construction and Building Materials, 2014, 68:110-119. DOI:10.1016/j.conbuildmat.2014.06.018.
[10] Wang J Y, Soens H, Verstraete W, et al. Self-healing concrete by use of microencapsulated bacterial spores[J]. Cement and Concrete Research, 2014, 56:139-152. DOI:10.1016/j.cemconres.2013.11.009.
[11] Huang H L, Ye G, Damidot D. Effect of blast furnace slag on self-healing of microcracks in cementitious materials[J]. Cement and Concrete Research, 2014, 60:68-82. DOI:10.1016/j.cemconres.2014.03.010.
[12] Qian C X, Luo M, Ren L F, et al. Self-healing and repairing concrete cracks based on bio-mineralization[J]. Key Engineering Materials, 2014, 629/630:494-503. DOI:10.4028/www.scientific.net/kem.629-630.494.
[13] Rodriguez-Navarro C, Rodriguez-Gallego M, Ben Chekroun K, et al. Conservation of ornamental stone by myxococcus Xanthus-induced carbonate biomineralization[J]. Applied and Environmental Microbiology, 2003, 69(4):2182-2193. DOI:10.1128/aem.69.4.2182-2193.2003.
[14] Castanier S, Le Métayer-Levrel G, Orial G, et al. Bacterial carbonatogenesis and applications to preservation and restoration of historic property[M]//Of Microbes and Art. Boston, MA:Springer US, 2000:203-218. DOI:10.1007/978-1-4615-4239-1_14.
[15] Wang J Y, Dewanckele J, Cnudde V, et al. X-ray computed tomography proof of bacterial-based self-healing in concrete[J]. Cement and Concrete Composites, 2014, 53:289-304. DOI:10.1016/j.cemconcomp.2014.07.014.
[16] 陈怀成, 钱春香, 任立夫. 基于微生物矿化技术的水泥基材料早期裂缝自修复[J]. 东南大学学报(自然科学版), 2016, 46(3):606-611. DOI:10.3969/j.issn.1001-0505.2016.03.025.
Chen H C, Qian C X, Ren L F. Self-healing of early age cracks in cement-based materials based on mineralization of microorganism[J]. Journal of Southeast University(Natural Science Edition), 2016, 46(3):606-611. DOI:10.3969/j.issn.1001-0505.2016.03.025. (in Chinese)
[17] 任立夫. 微生物修复水泥基材料早期裂缝研究[D]. 南京:东南大学, 2015.
  Ren L F. Research on restoration of early age cracks in cement-based materials by microbe[D]. Nanjing:Southeast University, 2015.(in Chinese)
[18] 刘丽萍. 微生物碳酸酐酶在方解石沉积中的作用[D]. 武汉:华中科技大学, 2009.
  Liu L P. Role of microbial carbonic anhydrase in calcite precipitation[D]. Wuhan:Huazhong University of Science and Technology, 2009.(in Chinese)

相似文献/References:

[1]刘志勇,张云升,姜骞,等.原位监测水泥基材料早期电阻率的变化过程[J].东南大学学报(自然科学版),2012,42(2):378.[doi:10.3969/j.issn.1001-0505.2012.02.035]
 Liu Zhiyong,Zhang Yunsheng,Jiang Qian,et al.In-situ monitoring of early-age electrical resistivity change process of cement-based materials[J].Journal of Southeast University (Natural Science Edition),2012,42(1):378.[doi:10.3969/j.issn.1001-0505.2012.02.035]
[2]范玉辉,肖建庄,曹明.再生骨料混凝土徐变特性基础试验[J].东南大学学报(自然科学版),2014,44(3):638.[doi:10.3969/j.issn.1001-0505.2014.03.033]
 Fan Yuhui,Xiao Jianzhuang,Cao Ming.Fundamental test on creep characteristics of recycled aggregate concrete[J].Journal of Southeast University (Natural Science Edition),2014,44(1):638.[doi:10.3969/j.issn.1001-0505.2014.03.033]
[3]张世义,范颖芳,李宁宁.纳米高岭土改性砂浆抗酸雨侵蚀试验研究[J].东南大学学报(自然科学版),2014,44(3):668.[doi:10.3969/j.issn.1001-0505.2014.03.038]
 Zhang Shiyi,Fan Yingfang,Li Ningning.Experimental study on acid resistance of nano-kaolinite modified cement mortar[J].Journal of Southeast University (Natural Science Edition),2014,44(1):668.[doi:10.3969/j.issn.1001-0505.2014.03.038]
[4]张丽辉,刘建忠,阳知乾,等.不同截面形状PP纤维对砂浆抗塑性开裂的影响及机理[J].东南大学学报(自然科学版),2016,46(1):160.[doi:10.3969/j.issn.1001-0505.2016.01.026]
 Zhang Lihui,Liu Jianzhong,Yang Zhiqian,et al.Influences and mechanism of polypropylene fibers with different cross-sections on anti-plastic-cracking of cement mortar[J].Journal of Southeast University (Natural Science Edition),2016,46(1):160.[doi:10.3969/j.issn.1001-0505.2016.01.026]
[5]朱健健,高建明,陈菲,等.砂浆半浸泡在硫酸钠溶液中不同表面处理材料防护效果比较[J].东南大学学报(自然科学版),2019,49(6):1162.[doi:10.3969/j.issn.1001-0505.2019.06.020]
 Zhu Jianjian,Gao Jianming,Chen Fei,et al.Comparison of protective effects on different surface treated concretes partially immersed in sodium sulfate solution[J].Journal of Southeast University (Natural Science Edition),2019,49(1):1162.[doi:10.3969/j.issn.1001-0505.2019.06.020]

备注/Memo

备注/Memo:
收稿日期: 2019-07-28.
作者简介: 张艺(1995—),女,硕士生;钱春香(联系人),女,博士,教授,博士生导师,cxqian@seu.edu.cn.
基金项目: 国家自然科学基金重点资助项目(51738003)、国家自然科学基金面上资助项目(51572047).
引用本文: 张艺,钱春香,张旋.微生物自修复砂浆裂缝区溶液理化特征[J].东南大学学报(自然科学版),2020,50(1):101-108. DOI:10.3969/j.issn.1001-0505.2020.01.014.
更新日期/Last Update: 2020-01-20