[1]朱海威,余红发,麻海燕.阻锈剂对海洋环境下混凝土中钢筋腐蚀影响的电化学研究[J].东南大学学报(自然科学版),2020,50(1):109-119.[doi:10.3969/j.issn.1001-0505.2020.01.015]
 Zhu Haiwei,Yu Hongfa,Ma Haiyan.Electrochemical study on effect of rust inhibitors on corrosion of reinforcing bar in concrete in marine environment[J].Journal of Southeast University (Natural Science Edition),2020,50(1):109-119.[doi:10.3969/j.issn.1001-0505.2020.01.015]
点击复制

阻锈剂对海洋环境下混凝土中钢筋腐蚀影响的电化学研究()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第1期
页码:
109-119
栏目:
材料科学与工程
出版日期:
2020-01-13

文章信息/Info

Title:
Electrochemical study on effect of rust inhibitors on corrosion of reinforcing bar in concrete in marine environment
作者:
朱海威余红发麻海燕
南京航空航天大学土木工程系, 南京 210016
Author(s):
Zhu Haiwei Yu Hongfa Ma Haiyan
Department of Civil Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
关键词:
海洋环境 钢筋混凝土结构 阻锈剂 耐腐蚀性能 电化学
Keywords:
marine environment reinforced-concrete structure rust inhibitor corrosion resistance electrochemistry
分类号:
TU503
DOI:
10.3969/j.issn.1001-0505.2020.01.015
摘要:
为提高海洋环境下钢筋混凝土结构的耐腐蚀性能,通过采用线性极化(LPR)与交流阻抗(EIS)2种电化学方法分别测试得到了经模拟海水侵蚀后混凝土中钢筋的极化曲线与阻抗复平面图,从而得到腐蚀电位、极化电阻、混凝土电阻、电荷迁移电阻等关键电化学参数,以此分析并讨论了4种不同阻锈机理的新型阻锈剂(SBT?-KLJ(Ⅵ)疏水化合孔栓物、SBT?-RMA(Ⅱ)混凝土高效防腐剂、SBT?-ZX(Ⅴ)复合氨基醇阻锈剂与改性亚硝酸钙阻锈剂)对混凝土中钢筋耐腐蚀性能的影响规律.结果表明:混凝土中钢筋的腐蚀过程分为过渡期与稳定期2个阶段,不同阶段呈现不同的电化学特征;SBT?-RMA(Ⅱ)混凝土高效防腐剂对钢筋混凝土结构耐腐蚀性能的提升效果显著,SBT?-ZX(Ⅴ)复合氨基醇阻锈剂与SBT?-KLJ(Ⅵ)疏水化合孔栓物的提升效果较好,而改性亚硝酸钙阻锈剂的提升效果一般.
Abstract:
To improve the corrosion resistance of reinforced concrete structures in the marine environment, the linear polarization resistance(LPR)and the electrochemical impedance spectroscopy(EIS)were taken to test the polarization curves and impedance complex plans of the steel bars in concrete after simulated seawater erosion. The key electrochemical parameters such as corrosion potential, polarization resistance, concrete resistance, and charge transfer resistance were obtained, the influence of four new rust inhibitors on the corrosion resistance of steel in concrete was analyzed and discussed. The results show that the corrosion process of steel in concrete can be divided into two stages with different electrochemical characteristics, including transition period and stable period. SBT?-RMA(Ⅱ)salt crystallization inhibitor has a significant improvement in the corrosion resistance of reinforced concrete structures, and SBT?-ZX(Ⅴ)composite amino-alcohol has a good improvement as well as SBT?-KLJ(Ⅵ)hydrophobic pore-blocking agent, while the modified calcium nitrite has a little improvement.

参考文献/References:

[1] Yu H F, Da B, Ma H Y, et al. Durability of concrete structures in tropical atoll environment[J].Ocean Engineering, 2017, 135: 1-10. DOI:10.1016/j.oceaneng.2017.02.020.
[2] 达波, 余红发, 麻海燕, 等. 南海海域混凝土结构的钢筋锈蚀特征[J]. 应用基础与工程科学学报, 2018, 26(2): 371-379. DOI:10.16058/j.issn.1005-0930.2018.02.014.
Da B, Yu H F, Ma H Y, et al. Reinforcement corrosion characterization of concrete structure in the South China sea[J]. Journal of Basic Science and Engineering, 2018, 26(2): 371-379. DOI:10.16058/j.issn.1005-0930.2018.02.014. (in Chinese)
[3] Broomfield J P. Corrosion of steel in concrete: Understanding, investigation and repair[M].2nd ed. Abingdon, England: Taylor & Francis, 2007: 7-9.
[4] Dhouibi L, Refait P, Triki E, et al. Interactions between nitrites and Fe(Ⅱ)-containing phases during corrosion of iron in concrete-simulating electrolytes[J]. Journal of Materials Science, 2006, 41(15): 4928-4936. DOI:10.1007/s10853-006-0332-0.
[5] Kumar M P, Mini K M, Rangarajan M. Ultrafine GGBS and calcium nitrate as concrete admixtures for improved mechanical properties and corrosion resistance[J].Construction and Building Materials, 2018, 182: 249-257. DOI:10.1016/j.conbuildmat.2018.06.096.
[6] Refait P, Reffass M, Landoulsi J, et al. Role of nitrite species during the formation and transformation of the Fe(Ⅱ-Ⅲ)hydroxycarbonate green rust[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 459: 225-232. DOI:10.1016/j.colsurfa.2014.07.004.
[7] Creasey R, Andrews J P,Ekolu S O, et al. Long-term 20-year performance of surface coating repairs applied to facades of reinforced concrete buildings[J]. Case Studies in Construction Materials, 2017, 7: 348-360. DOI:10.1016/j.cscm.2017.11.001.
[8] Tritthart J. Transport of a surface-applied corrosion inhibitor in cement paste and concrete[J]. Cement and Concrete Research, 2003, 33(6): 829-834. DOI:10.1016/S0008-8846(02)01067-0.
[9] Wombacher F, Maeder U, Marazzani B. Aminoalcohol based mixed corrosion inhibitors[J]. Cement and Concrete Composites, 2004, 26(3): 209-216. DOI:10.1016/S0958-9465(03)00040-4.
[10] 陈翠翠, 蔡景顺, 刘建忠, 等. 新型氨基醇阻锈剂在氯盐污染钢筋混凝土中的应用[J]. 硅酸盐学报, 2015, 43(4): 393-399. DOI:10.14062/j.issn.0454-5648.2015.04.05.
Chen C C, Cai J S, Liu J Z, et al. Use of aminoalcohol as inhibitor in chloride-contaminated steel reinforced concrete[J]. Journal of the Chinese Ceramic Society, 2015, 43(4): 393-399. DOI:10.14062/j.issn.0454-5648.2015.04.05.
[11] Millard S G, Gowers K R, Gill J S. Reinforcement corrosion assessment using linear polarization techniques[J]. Concrete Structures, 1991, SP128-24: 373-394.
[12] ASTM. ASTM D1141—2013 Standard practice for the preparation of substitute ocean water[S]. West Conshohocken, USA: ASTM, 2013.
[13] ASTM. ASTM G3—2014 Standard practice for conventions applicable to electrochemical measurements in corrosion testing[S]. West Conshohocken, USA: ASTM, 2014.
[14] Andrade C, Alonso C. Test methods for on-site corrosion rate measurement of steel reinforcement in concrete by means of the polarization resistance method[J]. Materials and Structures, 2004, 37(9): 623-643. DOI:10.1007/BF02483292.
[15] 施锦杰. 荷载与环境耦合因素作用下混凝土中钢筋锈蚀研究[D]. 南京: 东南大学, 2011.
  Shi J J. Corrosion of steel in concrete under simultaneous loading and environment effects[D]. Nanjing: Southeast University, 2011.(in Chinese)
[16] Andrade C,Keddam M, Nóvoa X R, et al. Electrochemical behaviour of steel rebars in concrete: Influence of environmental factors and cement chemistry[J]. Electrochimica Acta, 2001, 46(24/25): 3905-3912. DOI:10.1016/S0013-4686(01)00678-8.
[17] Pech-Canul M A, Castro P. Corrosion measurements of steel reinforcement in concrete exposed to a tropical marine atmosphere[J]. Cement and Concrete Research, 2002, 32(3): 491-498. DOI:10.1016/S0008-8846(01)00713-X.
[18] 刘加平, 穆松, 蔡景顺, 等. 水泥水化响应纳米材料的制备及性能评价[J]. 建筑结构学报, 2019, 40: 181-187. DOI: 10.14006/j.jzjgxb.2019.01.021.
Liu J P, Mu S, Cai J H, et al. Preparation and performance evaluation of cement hydration responsive nanomaterial[J]. Journal of Building Structures, 2019, 40: 181-187. DOI:10.14006/j.jzjgxb.2019.01.021. (in Chinese)
[19] 崔巩, 周华新, 李磊, 等. 疏水化合孔栓物对混凝土性能的影响研究与应用[J]. 新型建筑材料, 2017, 44(11): 28-31.
  Cui G, Zhou H X, Li L, et al. Study on the effect and application of hydrophobic pore-blocking agent on concrete performance[J]. New Building Materials, 2017, 44(11): 28-31.(in Chinese)
[20] Rixom M R, Mailvaganam N P. Chemical admixtures for concrete[J]. ACI Materials Journal, 1999, 86(3): 297-327. DOI: 10.4324/9780203017241.
[21] Allyn M, Frantz G C. Corrosion tests with concrete containing salts of alkenyl-substituted succinic acid[J]. ACI Materials Journal, 2001, 98(3): 224-232. DOI: 10.1002/tal.174.
[22] ASTM. ASTM C876—2015 Standard test method for corrosion potentials of uncoated reinforcing steel in concrete[S]. West Conshohocken, USA: ASTM, 2015.
[23] 中华人民共和国建设部. GB/T 50344—2004建筑结构检测技术标准[S]. 北京: 中国建筑工业出版社, 2004.
[24] 陈寒斌, 陈剑雄, 肖斐. 掺复合矿物超细粉混凝土的耐久性研究[J]. 建筑材料学报, 2006, 9(3): 353-356.
  Chen H B, Chen J X, Xiao F. Study on the durability of concrete modified by complex mineral superfine powder[J]. Journal of Building Materials, 2006, 9(3): 353-356.(in Chinese)
[25] 牛全林, 冯乃谦, 杨静. 矿物质超细粉在水泥粉体中填充效果的分析[J]. 硅酸盐学报, 2004, 32(1): 102-106. DOI:10.14062/j.issn.0454-5648.2004.01.019.
Niu Q L, Feng N Q, Yang J. Packing of superfine mineral powder in cement[J]. Journal of the Chinese Ceramic Society, 2004, 32(1): 102-106. DOI:10.14062/j.issn.0454-5648.2004.01.019. (in Chinese)
[26] Niu Q L, Feng N Q, Yang J, et al. Effect of superfine slag powder on cement properties[J]. Cement and Concrete Research, 2002, 32(4): 615-621. DOI:10.1016/S0008-8846(01)00730-X.
[27] Sagüés A A, Pech-Canul M A, Shahid Al-Mansur A K M. Corrosion macrocell behavior of reinforcing steel in partially submerged concrete columns[J]. Corrosion Science, 2003, 45(1): 7-32. DOI:10.1016/S0010-938X(02)00087-2.
[28] 吴瑾, 张兴才, 汪中. 环境温度和湿度对混凝土中钢筋腐蚀电位影响的试验研究[J]. 混凝土, 2016(9): 9-11.
  Wu J, Zhang X C, Wang Z. Study on effect of environmental temperature and humidity on half-cell potential of reinforcing bars in concrete[J]. Concrete, 2016(9): 9-11.(in Chinese)
[29] Macias A. Comparison of different electrochemical techniques for corrosion-rate determination of zinc-coated reinforcements in simulated concrete pore solutions[J]. Materials and Structures, 1991, 24(6): 456-465. DOI:10.1007/BF02472018.

相似文献/References:

[1]狄生林.钢筋混凝土梁的非线性有限元分析[J].东南大学学报(自然科学版),1984,14(2):87.[doi:10.3969/j.issn.1001-0505.1984.02.010]
 Di Shenq-lin.Nonlinear Finite Element Analysis of Reinforced Concrete Beams[J].Journal of Southeast University (Natural Science Edition),1984,14(1):87.[doi:10.3969/j.issn.1001-0505.1984.02.010]
[2]刘先觉,鲍家声,蔡冠丽.高层建筑若干问题[J].东南大学学报(自然科学版),1978,8(3):93.[doi:10.3969/j.issn.1001-0505.1978.03.006]
 [J].Journal of Southeast University (Natural Science Edition),1978,8(1):93.[doi:10.3969/j.issn.1001-0505.1978.03.006]
[3]袁必果.钢筋混凝土压弯构件塑性铰的试验研究[J].东南大学学报(自然科学版),1981,11(3):117.[doi:10.3969/j.issn.1001-0505.1981.03.014]
 Yuan Bi-guo.An Experimental Study of Plastic Hinges for Reinforced Concrete Members Subjected to Bending and Axial Load[J].Journal of Southeast University (Natural Science Edition),1981,11(1):117.[doi:10.3969/j.issn.1001-0505.1981.03.014]

备注/Memo

备注/Memo:
收稿日期: 2019-07-23.
作者简介: 朱海威(1990—),男,博士生;余红发(联系人),男,博士,教授,博士生导师,yuhongfa@nuaa.edu.cn.
基金项目: 国家自然科学基金资助项目(51678304,51878350)、国家自然科学基金重点资助项目(11832013).
引用本文: 朱海威,余红发,麻海燕.阻锈剂对海洋环境下混凝土中钢筋腐蚀影响的电化学研究[J].东南大学学报(自然科学版),2020,50(1):109-119. DOI:10.3969/j.issn.1001-0505.2020.01.015.
更新日期/Last Update: 2020-01-20