[1]耿艳芬,郭华强,柯兴,等.桥墩绕流特性对船舶运动受力的影响[J].东南大学学报(自然科学版),2020,50(1):153-160.[doi:10.3969/j.issn.1001-0505.2020.01.020]
 Geng Yanfen,Guo Huaqiang,Ke Xing,et al.Impact of flow characteristics around bridge piers on ship status[J].Journal of Southeast University (Natural Science Edition),2020,50(1):153-160.[doi:10.3969/j.issn.1001-0505.2020.01.020]
点击复制

桥墩绕流特性对船舶运动受力的影响()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第1期
页码:
153-160
栏目:
其他
出版日期:
2020-01-13

文章信息/Info

Title:
Impact of flow characteristics around bridge piers on ship status
作者:
耿艳芬郭华强柯兴马耀鲁
东南大学交通学院, 南京 211189
Author(s):
Geng Yanfen Guo Huaqiang Ke Xing Ma Yaolu
School of Transportation, Southeast University, Nanjing 211189, China
关键词:
桥区 桥墩 动船模型 艏摇力矩
Keywords:
bridge areas bridge piers moving ship model yaw moment
分类号:
TV131.2;U611
DOI:
10.3969/j.issn.1001-0505.2020.01.020
摘要:
为了揭示桥墩绕流特性对船舶运动受力的影响,基于三维Navier-Stokes方程,通过求解6DOF方程,结合虚拟单元浸入边界法和水平集法构建被动型动船模型,模拟分析在高雷诺数下船墩间距、船速与流速对船舶运动状态和受力的影响.分析结果表明:船墩间距的增大促使船舶艏摇力矩值迅速减小;船速变化对最大负艏摇力矩值的影响不明显,而船速减小会使偏航角度增大,船速增大使船舶横漂距离增大;流速的增大将促使船舶艏摇力矩值增大,且在船舶经过桥墩中部时所受负艏摇力矩增量最为显著.研究结果对于桥区船舶的安全通航问题具有一定的参考价值.
Abstract:
The solution of 6DOF equation was used, and the virtual unit immersed boundary method was combined with the level set method based on the theory of three-dimensional Navier-Stokes equations to construct the passive moving ship model and analyze the influence on ship motion status change caused by the pier distances, the ship speed and the flow velocity. The simulation results show that the increase of the pier distance causes the yaw moment of the ship to decrease rapidly; the ship speed change has no significant effect on the maximum negative yaw moment, but the decrease of the ship speed increases the yaw angle and the increase of ship speed increases the lateral drift distance of the ship; the increase of the flow velocity enlarges the yaw moment of the ship, and the negative yaw moment is the most significant when the ship passes through the middle of the pier. Thus, it has a reference value for ship navigation safety issues through bridge areas.

参考文献/References:

[1] Yang Z L. Design on remote sensing monitoring system of navigation Pharos in bridge area for inland waterway[J]. Procedia Computer Science, 2018, 131: 409-415. DOI:10.1016/j.procs.2018.04.223.
[2] Tseng M H, Yen C L, Song CC S. Computation of three-dimensional flow around square and circular piers[J]. International Journal for Numerical Methods in Fluids, 2000, 34(3): 207-227. DOI:10.1002/1097-0363(20001015)34:3<207::AID-FLD31>3.0.CO;2-R.
[3] Beheshti A A, Ataie-Ashtiani B. Experimental study of three-dimensional flow field around a complex bridge pier[J]. Journal of Engineering Mechanics, 2010, 136(2): 143-154. DOI:10.1061/(asce)em.1943-7889.0000073.
[4] Gautam P, Eldho T I, Mazumder B S, et al. Experimental study of flow and turbulence characteristics around simple and complex piers using PIV[J]. Experimental Thermal and Fluid Science, 2019, 100: 193-206. DOI:10.1016/j.expthermflusci.2018.09.010.
[5] 蒋昌波, 王刚, 邓斌, 等. 新型开孔桥墩水动力特性的PIV试验[J]. 水科学进展, 2014, 25(3): 383-391. DOI:10.14042/j.cnki.32.1309.2014.03.013.
Jiang C B, Wang G, Deng B, et al. PIV measurement of hydrodynamic characteristics of pier with a slot[J]. Advances in Water Science, 2014, 25(3): 383-391. DOI:10.14042/j.cnki.32.1309.2014.03.013. (in Chinese)
[6] 李景银,Lam K,Chan K T,等. 绕正方形排列的顺排的四个圆柱的流动研究[J]. 工程热物理学报, 2004, 25(1):59-62.
  Li J Y, Lam K, Chan K T, et al. Study on the cross flow around four cylinders in an in-line square arrangement at low reynolds numbers [J]. Journal of Engineering Thermophysics, 2004, 25(1): 59-62.(in Chinese)
[7] 周杰, 邹帅, 喜冠南. 不同间距比下串列双圆柱绕流的可视化实验[J]. 机械设计与制造, 2017(7): 19-21, 25. DOI:10.19356/j.cnki.1001-3997.2017.07.005.
Zhou J, Zou S, Xi G N. Visualization experiment on the flow characteristics of in-line cylinders for different spacings[J]. Machinery Design & Manufacture, 2017(7): 19-21, 25. DOI:10.19356/j.cnki.1001-3997.2017.07.005. (in Chinese)
[8] Catalano P, Wang M, Iaccarino G, et al. Numerical simulation of the flow around a circular cylinder at high Reynolds numbers[J]. International Journal of Heat and Fluid Flow, 2003, 24(4): 463-469. DOI:10.1016/s0142-727x(03)00061-4.
[9] 乔永亮, 桂洪斌, 刘祥鑫. 三维圆柱绕流数值模拟湍流方法的选择[J]. 水利水运工程学报, 2016(3): 119-125. DOI:10.16198/j.cnki.1009-640X.2016.03.016.
Qiao Y L, Gui H B, Liu X X. Analysis of three-dimensional numerical simulation methods for turbulent flow past circular cylinder[J]. Hydro-Science and Engineering, 2016(3): 119-125. DOI:10.16198/j.cnki.1009-640X.2016.03.016. (in Chinese)
[10] Li L, Yuan Z M, Ji C Y, et al. Investigation on the unsteady hydrodynamic loads of ship passing by bridge piers by a 3-D boundary element method[J]. Engineering Analysis with Boundary Elements, 2018, 94: 122-133. DOI:10.1016/j.enganabound.2018.06.010.
[11] Xu Y M, Liu M J, Zou Z J. Comparative study of numerical simulation and full-scale experiment of ship trajectory in bridge area[J]. Journal of Wuhan University of Technology(Transportation Science & Engineering), 2008, 32(3): 573-576.
[12] 徐言民,刘明俊.桥区水域船舶临界失控水动力干扰区研究[J]. 交通科技, 2008(3): 103-106.
  Xu Y M, Liu M J. Study on critical hydrodynamics interaction of incontrollable status in pier waters[J]. Transportation Science & Technology, 2008(3): 103-106.(in Chinese)
[13] 牛国杰, 刘晓平, 叶玉康, 等. 串列桥墩绕流对行进船舶受力的影响研究[J]. 交通科学与工程, 2018, 34(3): 46-52. DOI:10.16544/j.cnki.cn43-1494/u.2018.03.008.
Niu G J, Liu X P, Ye Y K, et al. Study on hydrodynamic interaction between tandem piers and ship[J]. Journal of Transport Science and Engineering, 2018, 34(3): 46-52. DOI:10.16544/j.cnki.cn43-1494/u.2018.03.008. (in Chinese)
[14] Gan L X, Zou Z J, Xu H X. Calculation and analysis of the hydrodynamic forces on a ship navigating in bridge area[J]. Journal of Ship Mechanics, 2014, 18(6):613-622. DOI: 1007-7294(2014)18:6<613:CAAOTH>2.0.TX;2-F.
[15] Li L, Yuan Z M, Ji C Y, et al. Investigation on the unsteady hydrodynamic loads of ship passing by bridge piers by a 3-D boundary element method[J]. Engineering Analysis with Boundary Elements, 2018, 94: 122-133. DOI:10.1016/j.enganabound.2018.06.010.
[16] 李安斌, 刘晓平, 叶玉康, 等. 航速对桥区行进船舶受力和重心位置的影响研究[J]. 长江科学院院报, 2018, 35(10):96-101.
  Li A B, Liu X P, Ye Y K, et al. Influence of navigation speed on the force and center of gravity of ship in bridge area[J]. Journal of Yangtze River Scientific Research Institute, 2018, 35(10):96-101.(in Chinese)
[17] 赵兰浩, 朱明倩, 毛佳. 基于有限元法的散度自由隐式浸入边界求解[J]. 水动力学研究与进展(A辑), 2018, 33(2): 223-229. DOI:10.16076/j.cnki.cjhd.2018.02.011.
Zhao L H, Zhu M Q, Mao J. An implicit divergence-free immersed boundary solution based on the finite element method[J]. Chinese Journal of Hydrodynamics, 2018, 33(2): 223-229. DOI:10.16076/j.cnki.cjhd.2018.02.011. (in Chinese)
[18] Bihs H, Kamath A. A combined level set/ghost cell immersed boundary representation for floating body simulations[J]. International Journal for Numerical Methods in Fluids, 2017, 83(12): 905-916. DOI:10.1002/fld.4333.
[19] 薛万云, 郭宁, 吴时强, 等. 桥墩水流特性大涡模拟研究[J]. 水利水运工程学报, 2016(4): 18-26. DOI:10.16198/j.cnki.1009-640X.2016.04.003.
Xue W Y, Guo N, Wu S Q, et al. Impacts of multiple bridge piers upon open channel flow based on LES[J]. Hydro-Science and Engineering, 2016(4): 18-26. DOI:10.16198/j.cnki.1009-640X.2016.04.003. (in Chinese)
[20] Lilly D K. A proposed modification of the Germano subgrid-scale closure method[J]. Physics of Fluids A: Fluid Dynamics, 1992, 4(3): 633-635. DOI:10.1063/1.858280.
[21] Cui J, Neary V S. LES study of turbulent flows with submerged vegetation[J]. Journal of Hydraulic Research, 2008, 46(3): 307-316. DOI:10.3826/jhr.2008.3129.
[22] Melville B W,Toeh A. Local scour at bridge sites[R]. Auckland, New Zealand: School of Engineering, University of Auckland, 1975.
[23] 詹昊, 李万平, 方秦汉, 等. 不同雷诺数下圆柱绕流仿真计算[J]. 武汉理工大学学报, 2008, 30(12): 129-132.
  Zhan H, Li W P, Fang Q H, et al. Numerical simulation of the flow around a circular cylinder at varies Reynolds number[J]. Journal of Wuhan University of Technology, 2008, 30(12): 129-132.(in Chinese)

相似文献/References:

[1]李鹏,刘钊.钢筋混凝土桥墩压弯承载力统一算法[J].东南大学学报(自然科学版),2003,33(5):660.[doi:10.3969/j.issn.1001-0505.2003.05.028]
 Li Peng,Liu Zhao.Unified method for calculating the axial and bending bearing capacity of RC piers[J].Journal of Southeast University (Natural Science Edition),2003,33(1):660.[doi:10.3969/j.issn.1001-0505.2003.05.028]

备注/Memo

备注/Memo:
收稿日期: 2019-07-09.
作者简介: 耿艳芬(1978—),女,博士,副教授,yfgeng@seu.edu.cn.
基金项目: 国家重点研发计划资助项目(2017YFC1404200)、国家自然科学基金资助项目(51979040)、港口航道泥沙工程交通行业重点实验室开放基金资助项目.
引用本文: 耿艳芬,郭华强,柯兴,等.桥墩绕流特性对船舶运动受力的影响[J].东南大学学报(自然科学版),2020,50(1):153-160. DOI:10.3969/j.issn.1001-0505.2020.01.020.
更新日期/Last Update: 2020-01-20