[1]张家旭,赵健,施正堂,等.基于回旋曲线的垂直泊车轨迹规划与跟踪控制[J].东南大学学报(自然科学版),2020,50(1):182-191.[doi:10.3969/j.issn.1001-0505.2020.01.024]
 Zhang Jiaxu,Zhao Jian,Shi Zhengtang,et al.Trajectory planning and tracking control for perpendicular parking based on clothoid curve[J].Journal of Southeast University (Natural Science Edition),2020,50(1):182-191.[doi:10.3969/j.issn.1001-0505.2020.01.024]
点击复制

基于回旋曲线的垂直泊车轨迹规划与跟踪控制()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第1期
页码:
182-191
栏目:
交通运输工程
出版日期:
2020-01-13

文章信息/Info

Title:
Trajectory planning and tracking control for perpendicular parking based on clothoid curve
作者:
张家旭12赵健1施正堂3杨雄3
1吉林大学汽车仿真与控制国家重点实验室, 长春 130011; 2中国第一汽车集团有限公司智能网联开发院, 长春 130011; 3浙江亚太机电股份有限公司, 杭州 311200
Author(s):
Zhang Jiaxu12 Zhao Jian1 Shi Zhengtang3 Yang Xiong3
1State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130011, China
2Intelligent Network Research and Development Institute, China FAW Group Co., Ltd., Changchun 130011, China
3Zhejiang Asia-Pacific Mechanical and Electronic Co., Ltd., Hangzhou 311200, China
关键词:
垂直泊车 轨迹规划与跟踪控制 回旋曲线 䦶Euclid Math OneLA@2增益控制 预估模型
Keywords:
perpendicular parking trajectory planning and tracking control clothoid curve 䦶Euclid Math OneLA@2 gain control prediction model
分类号:
U461.1
DOI:
10.3969/j.issn.1001-0505.2020.01.024
摘要:
为了提高复杂狭窄环境下的垂直泊车便捷性和安全性,提出一种基于回旋曲线的垂直泊车轨迹规划与跟踪控制方法.首先,将垂直泊车轨迹规划问题解耦成路径规划问题和速度规划问题,并基于回旋曲线规划曲率连续的垂直泊车路径,以及基于五次多项式曲线规划垂直泊车速度.随后,将垂直泊车轨迹跟踪控制问题解耦成垂直泊车路径跟踪控制问题和垂直泊车速度跟踪控制问题,并基于䦶Euclid Math OneLA@2增益控制理论和预估模型设计非时间参考泊车路径跟踪䦶Euclid Math OneLA@2增益控制律,以及基于PID控制设计垂直泊车速度跟踪控制律.最后,结合硬件在环试验平台对所提出方法的可行性和有效性进行验证.结果表明:所提出的垂直泊车轨迹规划方法得到的泊车路径曲率是连续的,且所提出的垂直泊车轨迹跟踪控制方法在泊车位宽度与车辆宽度之差大于0.655 m时可以安全、精确地引导车辆停放在泊车位.
Abstract:
To improve the convenience and the safety of perpendicular parking in complex and narrow environment, a novel trajectory planning and tracking control method for perpendicular parking based on a clothoid curve was proposed. First, the trajectory planning problem was decoupled into the path planning problem and the velocity planning problem, and the parking path with continuous curvature was planned based on the clothoid curve and the parking velocity was planned based on the quintic polynomial curve. Then, the trajectory tracking control problem was decoupled into the parking path and the parking vehicle tracking control problems, and the non-time reference parking path tracking 䦶Euclid Math OneLA@2 gain control law was proposed based on 䦶Euclid Math OneLA@2 gain control theory and the prediction model, and the parking velocity tracking control law was designed based on PID(proportion integration differentiation)control. Finally, the feasibility and the validity of the method were verified on hardware-in-the-loop test platform. The simulation results show that the curvature of the parking path by the method for perpendicular parking is continuous, and the proposed trajectory tracking control method for perpendicular parking can accurately guide the vehicle to park in the parking space when the deviation between the width of the parking space and the width of the vehicle is larger than 0.655 m.

参考文献/References:

[1] Zips P,Böck M, Kugi A. Optimisation based path planning for car parking in narrow environments[J]. Robotics and Autonomous Systems, 2016, 79: 1-11. DOI:10.1016/j.robot.2016.02.004.
[2] Xu Y, Lu Z F, Shan X, et al. Study on an automatic parking method based on the sliding mode variable structure and fuzzy logical control[J].Symmetry, 2018, 10(10): 523. DOI:10.3390/sym10100523.
[3] Ryu Y W, Oh S Y, Kim S Y. Robust automatic parking without odometry using an evolutionary fuzzy logic controller[J]. International Journal of Control Automation and Systems, 2008, 6(3): 434-443.
[4] Zheng G Q, Zhao L, Li J S. Optimization of an intelligent controller for parallel autonomous parking[J]. TELKOMNIKA Indonesian Journal of Electrical Engineering, 2013, 11(2): 1069-1075. DOI:10.1108/09600030110387462.
[5] 李占江. 车辆自动泊车的模糊控制方法研究[D]. 长春: 吉林大学, 2007.
  Li Z J. Study on the fuzzy control of automotive automatic parking[D]. Changchun: Jilin University, 2007.(in Chinese)
[6] 姜辉. 自动平行泊车系统转向控制策略的研究[D]. 长春: 吉林大学, 2010.
  Jiang H. Research on strategies of automatic parallel parking steering control[D]. Changchun: Jilin University, 2010.(in Chinese)
[7] Gómez-Bravo F, Cuesta F,Ollero A. Parallel and diagonal parking in nonholonomic autonomous vehicles[J]. Engineering Applications of Artificial Intelligence, 2001, 14(4): 419-434. DOI:10.1016/s0952-1976(01)00004-5.
[8] Li B, Shao Z J. A unified motion planning method for parking an autonomous vehicle in the presence of irregularly placed obstacles[J].Knowledge-Based Systems, 2015, 86: 11-20. DOI:10.1016/j.knosys.2015.04.016.
[9] Vorobieva H, Glaser S, Minoiu-Enache N, et al. Automatic parallel parking in tiny spots: Path planning and control[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(1): 396-410. DOI:10.1109/TITS.2014.2335054.
[10] 叶林铨. 基于伪谱法的自主泊车路径规划方法研究[D]. 合肥: 中国科学技术大学, 2016.
  Ye L Q. Research on autonomous parking path planning based on pseudospectral method[D]. Hefei: University of Science and Technology of China, 2016.(in Chinese)
[11] 赵海兰. 全自动平行泊车路径规划及路径跟踪研究[D]. 淄博: 山东理工大学, 2017.
  Zhao H L. Study on path planning and path tracking method for fully-automatic parallel parking[D]. Zibo: Shandong University of Technology, 2017.(in Chinese)
[12] 黄晓峰. 自动泊车系统最优轨迹决策及控制算法研究[D]. 长春: 吉林大学, 2018.
  Huang X F. Study on optimal trajectory decision and control algorithm of automatic parking system[D]. Changchun: Jilin University, 2018.(in Chinese)
[13] Scheuer A,Fraichard T. Planning continuous-curvature paths for car-like robots[C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS 96). Osaka, Japan, 1996: 1304-1311. DOI:10.1109/iros.1996.568985.
[14] Kim S J, Koh K, Lustig M, et al. An interior-point method for large-scale l1-regularized least squares[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 606-617. DOI: 10.1109/JSTSP.2007.910971.
[15] Rajamani R. Vehicle dynamics and control[M]. Boston: Springer, 2012: 15-39. DOI:10.1007/978-1-4614-1433-9.
[16] 姜长生, 吴庆宪, 费树岷, 等. 现代非线性系统鲁棒控制基础[M]. 哈尔滨: 哈尔滨工业大学出版社, 2012:50-66.
[17] Tao G. A simple alternative to the Barbalat lemma[J]. IEEE Transactions on Automatic Control, 1997, 42(5): 698. DOI:10.1109/9.580878.
[18] Thrun S, Montemerlo M, Dahlkamp H, et al. Stanley: The robot that won the DARPA grand challenge[J]. Journal of Field Robotics, 2006, 23(9): 661-692. DOI:10.1002/rob.20147.

备注/Memo

备注/Memo:
收稿日期: 2019-07-25.
作者简介: 张家旭(1985—),男,博士;赵健(联系人),男,博士,教授,博士生导师,zhaojian@jlu.edu.cn.
基金项目: 国家自然科学基金面上资助项目(51575225).
引用本文: 张家旭,赵健,施正堂,等.基于回旋曲线的垂直泊车轨迹规划与跟踪控制[J].东南大学学报(自然科学版),2020,50(1):182-191. DOI:10.3969/j.issn.1001-0505.2020.01.024.
更新日期/Last Update: 2020-01-20