[1]甘露,宗周红,李明鸿,等.爆炸作用下U形加劲肋加劲钢板结构的动态响应与破坏模式[J].东南大学学报(自然科学版),2020,50(2):207-214.[doi:10.3969/j.issn.1001-0505.2020.02.001]
 Gan Lu,Zong Zhouhong,Li Minghong,et al.Dynamic response and failure mode of U-shaped stiffener stiffened steel plate under blast loading[J].Journal of Southeast University (Natural Science Edition),2020,50(2):207-214.[doi:10.3969/j.issn.1001-0505.2020.02.001]
点击复制

爆炸作用下U形加劲肋加劲钢板结构的动态响应与破坏模式()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第2期
页码:
207-214
栏目:
数学、物理学、力学
出版日期:
2020-03-20

文章信息/Info

Title:
Dynamic response and failure mode of U-shaped stiffener stiffened steel plate under blast loading
作者:
甘露1宗周红1李明鸿1钱海敏1林津1高超2
1东南大学土木工程学院, 南京 211189; 2中国人民解放军61489部队, 洛阳 471000
Author(s):
Gan Lu1 Zong Zhouhong1 Li Minghong1 Qian Haimin1 Lin Jin1 Gao Chao2
1School of Civil Engineering, Southeast University, Nanjing 211189, China
2PLA 61489 Troops, Luoyang 471000, China
关键词:
加劲钢板 爆炸荷载 数值模拟 破坏模式
Keywords:
stiffened plate blast loading numerical simulation failure mode
分类号:
O383
DOI:
10.3969/j.issn.1001-0505.2020.02.001
摘要:
基于数值模拟方法对爆炸作用下钢板和加劲钢板的动力响应和破坏模式进行了研究.采用显式非线性动力分析软件LS-DYNA,利用ALE和FSI算法建立了考虑爆炸过程及冲击波与钢板相互作用的数值模型,并基于试验数据验证了模型的准确性和可靠性,分析了不同工况下钢板、板式加劲肋加劲板及U形加劲肋加劲板在爆炸荷载下的动力响应和破坏模式.结果表明:在局部爆炸荷载下,U形加劲肋与板式加劲肋沿着加劲肋纵向不均匀变形,导致加劲板变形并破坏;2种加劲肋均可有效抑制钢板中心位置的变形,且U形加劲肋效果更显著;加劲钢板的破坏程度与加劲肋数量密切相关,合理布置U形加劲肋数量可以显著减轻钢板的破坏;增加U形加劲肋端头隔板有利于提高钢板的抗扭性能,减小钢板的最终开裂破坏程度.
Abstract:
The dynamic response and the failure modes of steel plates and stiffened steel plates under blast loading were studied based on numerical simulation methods. The explicit nonlinear dynamic analysis software LS-DYNA was used to establish a numerical model considering the explosion process and the interaction between the shock wave and the steel plate with the arbitrary Lagrangian-Eulerian(ALE)algorithm and the fluid-structure interaction(FSI)algorithm, and the accuracy and the reliability of the model were verified by experimental data. The dynamic response and the failure modes of the steel plate, the plate stiffener stiffened plate and the U-shaped stiffener stiffened plate under blast loading in different conditions were analyzed. The results show that under the local blast loading, the U-shaped and the plate stiffeners are unevenly deformed along the longitudinal direction of the stiffeners, resulting in the stiffened plate to deform and break. Both stiffeners can effectively suppress the deformation of the center position of the steel plate, and the effect of the U-shaped stiffener is more significant. The damage degree of the stiffened steel plate is closely related to the number of stiffeners. The reasonable arrangement of the number of the U-shaped stiffeners can reduce the damage of the steel plate under the blast loading. The increase of the U-shaped stiffeners end baffle is beneficial to improve the torsional resistance of the steel plate and reduce the ultimate cracking damage.

参考文献/References:

[1] Wang W, Liu R, Wu B. Analysis of a bridge collapsed by an accidental blast loads[J]. Engineering Failure Analysis, 2014, 36: 353-361. DOI: 10.1016/j.engfailanal.2013.10.022.
[2] Winget D G, Marchand K A, Williamson E B. Analysis and design of critical bridges subjected to blast loads[J]. Journal of Structural Engineering, 2005, 131(8): 1243-1255. DOI: 10.1061/(asce)0733-9445(2005)131:8(1243).
[3] Seible F, Hegemier G, Karbhari V M, et al. Protection of our bridge infrastructure against man-made and natural hazards[J]. Structure and Infrastructure Engineering, 2008, 4(6): 415-429. DOI: 10.1080/15732470601130311.
[4] Stewart M G, Netherton M D, Rosowsky D V. Terrorism risks and blast damage to built infrastructure[J]. Natural Hazards Review, 2006, 7(3): 114-122. DOI: 10.1061/(ASCE)1527-6988(2006)7:3(114).
[5] 宗周红,唐彪,高超,等. 钢筋混凝土墩柱抗爆性能试验[J]. 中国公路学报, 2017, 30(9): 51-60. DOI: 10.19721/j.cnki.1001-7372.2017.09.007.
Zong Z H, Tang B, Gao C, et al. Experiment on blast-resistance performance of reinforced concrete piers[J]. China Journal of Highway and Transport, 2017, 30(9): 51-60. DOI:10.19721/j.cnki.1001-7372.2017.09.007. (in Chinese)
[6] 张宇,李国强,陈可鹏,等. 桥梁结构抗爆安全评估研究进展[J]. 爆炸与冲击, 2016, 36(1): 135-144. DOI: 10.11883/1001-1455(2016)01-0135-10
Zhang Y, Li G Q, Chen K P, et al. Research advances of safety assessment of bridges under blast load[J]. Explosion and Shock Waves, 2016, 36(1): 135-144. DOI:10.11883/1001-1455(2016)01-0135-10. (in Chinese)
[7] Son J. Performance of cable supported bridge decks subjected to blast loads[D]. Berkeley, CA, USA: University of California, Berkeley, 2008.
[8] 朱新明. 钢箱梁爆炸冲击局部破坏数值模拟研究[D]. 长沙: 国防科技大学, 2011.
  Zhu X M. Failure of steel box girders under blast loading [D]. Changsha: National University of Defense Technology, 2011.(in Chinese)
[9] 白志海. 正交异性钢桥面板恐怖爆炸破坏机理研究[D]. 长沙: 国防科技大学, 2010.
  Bai Z H. Investigation of failure mechanisms of orthotropic steel bridge decks under terror blast loading[D]. Changsha: National University of Defense Technology, 2010.(in Chinese)
[10] 陈长海,朱锡,侯海量,等. 近距空爆载荷作用下固支方板的变形及破坏模式[J]. 爆炸与冲击, 2012, 32(4): 368-375. DOI: 10.3969/j.issn.1001-1455.2012.04.005.
Chen C H, Zhu X, Hou H L, et al. Deformation and failure modes of clamped square plates under close-range air blast loads[J]. Explosion and Shock Waves, 2012, 32(4): 368-373. DOI:10.3969/j.issn.1001-1455.2012.04.005. (in Chinese)
[11] 王芳,冯顺山,俞为民. 爆炸冲击波作用下靶板的塑性大变形响应研究[J]. 中国安全科学学报, 2003,13(3): 61-64. DOI: 10.3969/j.issn.1003-3033.2003.03.016.
Wang F, Feng S S, Yu W M. Study on Large plastic deformation response of target plate under explosive blast wave[J]. China Safety Science Journal, 2003, 13(3): 61-64. DOI:10.3969/j.issn.1003-3033.2003.03.016. (in Chinese)
[12] 赵鹏铎,张鹏,张磊,等. 聚脲涂覆钢板结构抗爆性能试验研究[J]. 北京理工大学学报, 2018, 38(02): 118-123. DOI: 10.15918/j.tbit 1001-0645.2018.02.002.
Zhao P D, Zhang P, Zhang L, et al. Experimental Investigation on the performance of polyurea-coated structure under blast loads [J]. Transactions of Beijing Institute of Technology, 2018, 38(2): 118-123. DOI:10.15918/j.tbit 1001-0645.2018.02.002. (in Chinese)
[13] Chung Kim Yuen S, Nurick G N, Verster W, et al. Deformation of mild steel plates subjected to large-scale explosions[J]. International Journal of Impact Engineering, 2008, 35(8): 684-703. DOI: 10.1016/j.ijimpeng.2008.02.001.
[14] Jacinto A C, Ambrosini R D, Danesi R F. Experimental and computational analysis of plates under air blast loading[J]. International Journal of Impact Engineering, 2001, 25(10): 927-947. DOI: 10.1016/S0734-743X(01)00031-8.
[15] Remennikov A, Ngo T, Mohotti D, et al. Experimental investigation and simplified modeling of response of steel plates subjected to close-in blast loading from spherical liquid explosive charges[J]. International Journal of Impact Engineering, 2017, 101: 78-89. DOI: 10.1016/j.ijimpeng.2016.11.013.
[16] Chung Kim Yuen S, Nurick G N. Experimental and numerical studies on the response of quadrangular stiffened plates. Part Ⅰ: Subjected to uniform blast load[J]. International Journal of Impact Engineering, 2005, 31(1): 55-83. DOI: 10.1016/j.ijimpeng.2003.09.048.
[17] Langdon G S, Yuen S C K, Nurick G N. Experimental and numerical studies on the response of quadrangular stiffened plates. Part Ⅱ: Localised blast loading[J]. International Journal of Impact Engineering, 2005, 31(1): 85-111. DOI: 10.1016/j.ijimpeng.2003.09.050.
[18] Rudrapatna N S, Vaziri R, Olson M D. Deformation and failure of blast-loaded stiffened plates[J]. International Journal of Impact Engineering, 2000, 24(5): 457-474. DOI: 10.1016/S0734-743X(99)00172-4.
[19] Goel M D, Matsagar V A, Gupta A K. Dynamic response of stiffened plates under air blast[J]. International Journal of Protective Structures, 2011, 2(1): 139-155. DOI: 10.1260/2041-4196.2.1.139
[20] Yu W, Zhao J, Shi J. Dynamic mechanical behaviour of Q345 steel at elevated temperatures: Experimental study[J]. Materials at High Temperatures, 2010, 27(4): 285-293. DOI: 10.3184/096034010X1276193 1945540
[21] 支旭东,张荣,林莉,等. Q235B钢动态本构及在LS-DYNA中的应用[J]. 爆炸与冲击, 2018, 38(03): 596-602. DOI: 10.11883/bzycj-2016-0286.
Zhi X D, Zhang R, Lin L, et al. Dynamic constitutive model of Q235B steel and its application in LS-DYNA[J]. Explosion and Shock Waves, 2018, 38(3): 596-602. DOI:10.11883/bzycj-2016-0286. (in Chinese)
[22] 时党勇,李裕春,张胜民. 基于 ANSYS/LS-DYNA 8.1 进行显式动力分析[M]. 北京:清华大学出版社有限公司, 2005:184-199.

备注/Memo

备注/Memo:
收稿日期: 2019-09-25.
作者简介: 甘露(1996—),男,博士生;宗周红(联系人),男,博士,教授,博士生导师,zongzh@seu.edu.cn.
基金项目: 国家重点研发计划资助项目(2017YFC0703405)、国家自然科学基金面上资助项目(51678141).
引用本文: 甘露,宗周红,李明鸿,等.爆炸作用下U形加劲肋加劲钢板结构的动态响应与破坏模式[J].东南大学学报(自然科学版),2020,50(2):207-214. DOI:10.3969/j.issn.1001-0505.2020.02.001.
更新日期/Last Update: 2020-03-20