[1]魏洋,柏佳文,张依睿,等.矩形开槽钢管混凝土柱的受压承载性能[J].东南大学学报(自然科学版),2020,50(2):237-243.[doi:10.3969/j.issn.1001-0505.2020.02.005]
 Wei Yang,Bai Jiawen,Zhang Yirui,et al.Compressive behaviors of rectangular concrete-filled slotted steel tubular columns[J].Journal of Southeast University (Natural Science Edition),2020,50(2):237-243.[doi:10.3969/j.issn.1001-0505.2020.02.005]
点击复制

矩形开槽钢管混凝土柱的受压承载性能()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第2期
页码:
237-243
栏目:
土木工程
出版日期:
2020-03-20

文章信息/Info

Title:
Compressive behaviors of rectangular concrete-filled slotted steel tubular columns
作者:
魏洋柏佳文张依睿丁明珉李国芬
南京林业大学土木工程学院, 南京 210037
Author(s):
Wei Yang Bai Jiawen Zhang Yirui Ding Mingmin Li Guofen
School of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
关键词:
钢管混凝土 开槽 倒角半径 轴压性能 约束效率
Keywords:
concrete filled steel tube slotting chamfer radius axial compressive behavior confinement efficiency
分类号:
TU398.9
DOI:
10.3969/j.issn.1001-0505.2020.02.005
摘要:
为分析环向钢管对核心混凝土受压承载性能的提高效果,对15个矩形开槽钢管混凝土柱进行轴压试验,研究倒角半径和钢管厚度对其受压性能的影响.基于圆形箍筋约束混凝土的极限应力计算模型,引入考虑截面形状的承载力折减系数,提出了矩形开槽钢管混凝土柱极限应力计算模型.结果表明,矩形开槽钢管约束混凝土柱的受压性能与钢管厚度及倒角半径密切相关,且钢管的开槽构造能够有效地避免钢管的纵向屈服.倒角半径越小,钢管约束效果越差,应力-应变曲线在屈服后会出现下降段,且钢管厚度越小,峰值后荷载下降越快.倒角半径越大,约束效率越高,应力-应变曲线在屈服后较平缓或出现上升段,但钢管厚度较大时,其环向约束效果下降,极限应力提高幅度也明显下降.
Abstract:
To analyze the improvement effects of hoop steel tubes on the compressive behaviors of core concrete, axial compression tests were carried out on fifteen rectangular concrete-filled slotted steel tubular columns. The effects of the chamfer radius and the thickness of the steel tube on the compressive behaviors of the rectangular concrete-filled slotted steel tubular columns were studied. Based on the calculation model of the ultimate stress of concrete confined by circular stirrups, the calculation model of the ultimate stress for rectangular concrete-filled slotted steel tubular columns was proposed by introducing the reduction coefficient of bearing capacity considering the section shape. The results show that the compressive behaviors of the rectangular concrete-filled slotted steel tubular columns are closely related to the thickness of the steel tube and the chamfer radius, and the slotted structure of the steel tube can avoid the longitudinal buckling of the steel tube. A smaller chamfer radius can induce worse confinement effects of the steel tube, accompanied by the appearance of a descending segment of the stress-strain curve after yielding. And with the decrease of the thickness of the steel tube, the load decreases with a faster speed after the peak stress. Besides, a higher confinement efficiency can be obtained with a larger chamfer radius, accompanied by the appearance of a horizontal or ascending segment of the stress-strain curve after yielding. But the effects of lateral confinement decreases when the thickness of steel tube is large, and the improvement of the ultimate stress also decreases obviously.

参考文献/References:

[1] Mander J B, Priestley M J N, Park R. Observed stress-strain behavior of confined concrete[J]. Journal of Structural Engineering, 1988, 114(8): 1827-1849. DOI:10.1061/(asce)0733-9445(1988)114:8(1827).
[2] Mander J B, Priestley M J N, Park R. Theoretical stress-strain model for confined concrete[J]. Journal of Structural Engineering, 1988, 114(8): 1804-1826. DOI:10.1061/(asce)0733-9445(1988)114:8(1804).
[3] Lai M H, Ho J C M. Effect of continuous spirals on uni-axial strength and ductility of CFST columns[J]. Journal of Constructional Steel Research, 2015, 104: 235-249. DOI:10.1016/j.jcsr.2014.10.007.
[4] Wei Y, Zhang X, Wu G, et al. Behaviour of concrete confined by both steel spirals and fiber-reinforced polymer under axial load[J]. Composite Structures, 2018, 192: 577-591. DOI:10.1016/j.compstruct.2018.03.041.
[5] 郭兰慧,戎芹,张素梅.方钢管混凝土中钢管屈曲承载力研究[J].哈尔滨工业大学学报,2011,43(10):6-11.
  Guo L H, Rong Q, Zhang S M. Buckling strength of square hollow section steel filled with concrete[J]. Journal of Harbin Institute of Technology, 2011, 43(10): 6-11.(in Chinese)
[6] Wei Y, Jiang C, Wu Y F. Confinement effectiveness of circular concrete-filled steel tubular columns under axial compression[J]. Journal of Constructional Steel Research, 2019, 158: 15-27. DOI:10.1016/j.jcsr.2019.03.012.
[7] Ouyang Y, Kwan A K H. Finite element analysis of square concrete-filled steel tube(CFST)columns under axial compressive load[J]. Engineering Structures, 2018, 156: 443-459. DOI:10.1016/j.engstruct.2017.11.055.
[8] Tomii M, Sakino K, Xiao Y, et al. Earthquake resisting hysteretic behavior of reinforced concrete short columns confined by steel tube [C]//Proceeding of the International Speciality Conference on Concrete Filled Steel Tubular Structure. Harbin: Harbin Architectual and Civil Engineering Institute, 1985: 119-125.
[9] Fam A, Qie F S, Rizkalla S. Concrete-filled steel tubes subjected to axial compression and lateral cyclic loads[J]. Journal of Structural Engineering, 2004, 130(4): 631-640. DOI:10.1061/(asce)0733-9445(2004)130:4(631).
[10] Giakoumelis G, Lam D. Axial capacity of circular concrete-filled tube columns[J]. Journal of Constructional Steel Research, 2004, 60(7): 1049-1068. DOI:10.1016/j.jcsr.2003.10.001.
[11] Xue J Q, Briseghella B, Chen B C. Effects of debonding on circular CFST stub columns[J]. Journal of Constructional Steel Research, 2012, 69(1): 64-76. DOI:10.1016/j.jcsr.2011.08.002.
[12] de Oliveira W L A, de Nardin S, de Cresce El Debs A L H, et al. Evaluation of passive confinement in CFT columns[J]. Journal of Constructional Steel Research, 2010, 66(4): 487-495. DOI:10.1016/j.jcsr.2009.11.004.
[13] Zhu J Y, Chan T M. Experimental investigation on steel-tube-confined-concrete stub column with different cross-section shapes under uniaxial-compression[J]. Journal of Constructional Steel Research, 2019, 162: 105729. DOI:10.1016/j.jcsr.2019.105729.
[14] 王英涛,蔡健,龙跃凌,等.带约束拉杆方形钢管混凝土短柱偏压工作机理[J].东南大学学报(自然科学版),2015,45(2):370-375. DOI:10.3969/j.issn.1001-0505.2015.02.030.
Wang Y T, Cai J, Long Y L, et al. Eccentric compressive mechanism of square CFT columns with binding bars[J]. Journal of Southeast University(Natural Science Edition), 2015, 45(2): 370-375. DOI:10.3969/j.issn.1001-0505.2015.02.030. (in Chinese)
[15] 左志亮,蔡健,朱昌宏.带约束拉杆L形钢管混凝土短柱的偏压试验研究[J].东南大学学报(自然科学版),2010,40(2):346-351. DOI:10.3969/j.issn.1001-0505.2010.02.025.
Zuo Z L, Cai J, Zhu C H. Experimental research on L-shape CFT stub columns with binding bars subjected to eccentric compression[J]. Journal of Southeast University(Natural Science Edition), 2010, 40(2): 346-351. DOI:10.3969/j.issn.1001-0505.2010.02.025. (in Chinese)
[16] 魏洋,张希,柏佳文,等.一种具有减压槽的纤维-钢复合管混凝土结构制作方法:中国,CN201710045385.7[P].2017-08-18.
[17] Sakino K, Nakahara H, Morino S, et al. Behavior of centrally loaded concrete-filled steel-tube short columns[J]. Journal of Structural Engineering, 2004, 130(2): 180-188. DOI:10.1061/(asce)0733-9445(2004)130:2(180).
[18] 徐扬,魏洋,程勋煜,等.碳纤维-箍筋约束倒角矩形混凝土柱的轴压性能[J].玻璃钢/复合材料,2019(6):5-11. DOI:10.3969/j.issn.1003-0999.2019.06.001.
Xu Y, Wei Y, Cheng X Y, et al. Axial compressive behavior of CFRP-stirrup confined rounded rectangular concrete columns[J]. Fiber Reinforced Plastics/Composites, 2019(6): 5-11. DOI:10.3969/j.issn.1003-0999.2019.06.001. (in Chinese)

相似文献/References:

[1]曹万林,杨亚彬,张建伟,等.圆钢管混凝土边框内藏桁架剪力墙抗震性能[J].东南大学学报(自然科学版),2009,39(6):1187.[doi:10.3969/j.issn.1001-0505.2009.06.020]
 Cao Wanlin,Yang Yabin,Zhang Jianwei,et al.Seismic behaviors of shear wall with concrete filled round steel tube columns and concealed bracing[J].Journal of Southeast University (Natural Science Edition),2009,39(2):1187.[doi:10.3969/j.issn.1001-0505.2009.06.020]
[2]欧谨,杨放,刘伟庆,等.钢管混凝土双梁节点试验及现场测试[J].东南大学学报(自然科学版),2001,31(1):74.[doi:10.3969/j.issn.1001-0505.2001.01.016]
 Ou Jin,Yang Fang,Liu Weiqing,et al.Experimental Research and Site Test on the Double Beams CFST Joints[J].Journal of Southeast University (Natural Science Edition),2001,31(2):74.[doi:10.3969/j.issn.1001-0505.2001.01.016]
[3]朱筱俊,梁书亭,蒋永生,等.钢管混凝土板柱结构剪力环节点冲切试验[J].东南大学学报(自然科学版),1998,28(2):57.[doi:10.3969/j.issn.1001-0505.1998.02.012]
 Zhu Xiaojun Liang Shuting Jiang Yongsheng,Li Xingsheng,She Yuexin.Punching Shear Experiments of Annulus Joints of Concrete filled Steel Tube Column Slab Structures[J].Journal of Southeast University (Natural Science Edition),1998,28(2):57.[doi:10.3969/j.issn.1001-0505.1998.02.012]
[4]顾伯禄,朱筱俊,吕清芳,等.新型钢管砼框架节点试验研究及其应用[J].东南大学学报(自然科学版),1998,28(6):106.[doi:10.3969/j.issn.1001-0505.1998.06.021]
 Gu Bolu Zhu Xiaojun L Qingfang Liu Yafei Jiang Yongsheng,.Experimental Studies on New Frame Joints of Concrete Filled Steel Tube Structure and Its Applications[J].Journal of Southeast University (Natural Science Edition),1998,28(2):106.[doi:10.3969/j.issn.1001-0505.1998.06.021]
[5]冯升明,戴国亮,钮佳伟,等.考虑泥皮及径厚比影响的钢混组合桩黏结性能试验研究[J].东南大学学报(自然科学版),2018,48(6):987.[doi:10.3969/j.issn.1001-0505.2018.06.002]
 Feng Shengming,Dai Guoliang,Niu Jiawei,et al.Experimental study on bond-slip behavior of steel tubular composite pile under the influence of mud and radius-thickness ratio[J].Journal of Southeast University (Natural Science Edition),2018,48(2):987.[doi:10.3969/j.issn.1001-0505.2018.06.002]

备注/Memo

备注/Memo:
收稿日期: 2019-08-16.
作者简介: 魏洋(1978—),男,博士,教授,博士生导师,wy78@njfu.edu.cn.
基金项目: 国家自然科学基金资助项目(51778300)、江苏省自然科学基金资助项目(BK20191390)、江苏省“六大人才高峰”资助项目(JZ-017)、江苏省“333工程”资助项目(BRA2016421)、江苏省“青蓝工程”资助项目.
引用本文: 魏洋,柏佳文,张依睿,等.矩形开槽钢管混凝土柱的受压承载性能[J].东南大学学报(自然科学版),2020,50(2):237-243. DOI:10.3969/j.issn.1001-0505.2020.02.005.
更新日期/Last Update: 2020-03-20