[1]鲁建,薛素铎,李雄彦,等.索桁张拉结构形状设计及找力分析[J].东南大学学报(自然科学版),2020,50(2):244-250.[doi:10.3969/j.issn.1001-0505.2020.02.006]
 Lu Jian,Xue Suduo,Li Xiongyan,et al.Shape design and finding force analysis on cable-truss tensile structure[J].Journal of Southeast University (Natural Science Edition),2020,50(2):244-250.[doi:10.3969/j.issn.1001-0505.2020.02.006]
点击复制

索桁张拉结构形状设计及找力分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第2期
页码:
244-250
栏目:
土木工程
出版日期:
2020-03-20

文章信息/Info

Title:
Shape design and finding force analysis on cable-truss tensile structure
作者:
鲁建1薛素铎1李雄彦1刘人杰2
1北京工业大学建筑工程学院, 北京 100124; 2烟台大学土木工程学院, 烟台 264000
Author(s):
Lu Jian1 Xue Suduo1 Li Xiongyan1 Liu Renjie2
1College of Civil Engineering, Beijing University of Technology, Beijing 100124, China
2 College of Civil Engineering, Yantai University, Yantai 264000, China
关键词:
索桁张拉结构 形状判定 自应力模态 有限元 改进的力迭代法
Keywords:
cable-truss tensile structure shape determination self-stress modes finite element improved force iteration method
分类号:
TU394
DOI:
10.3969/j.issn.1001-0505.2020.02.006
摘要:
为研究索桁张拉结构的形状判定和自应力求解问题,通过ANSYS有限元软件,提出了基于合理位形改进的力迭代法.首先,基于索桁张拉结构所特有的拓扑关系,从其合理位形出发,推导了形状判定的简洁判断公式.然后,提出了改进的力迭代法,用以求解索桁张拉结构的自应力模态.迭代过程中,更新后的索力逐渐逼近目标值,并在目标预应力作用下得到结构的不平衡位移.算例结果表明,所提方法可一次性确定索桁架的合理形状,且迭代5次左右便可求得结构的自应力模态,所得结果与已有方法的结果相比最大误差为0.48%,满足精度要求.将基于平面索桁架得到的自应力模态代入空间索桁张拉结构中,计算结果接近,内力最大误差为0.030%,且不平衡位移较小,从而证明了由平面索桁架组装成空间索桁张拉结构的可行性.
Abstract:
To study the shape determination and solve the self-stress modes of cable-truss tensile structures, an improved force iteration method based on reasonable shape was proposed by the finite element software ANSYS. Firstly, a simple formula for shape determination was derived from the rational shape based on the topological relation of the cable-truss tensile structure. Then, an improved force iteration method was proposed to solve the self-stress modes of the cable-truss tensile structures. In the iteration process, the updated cable forces were gradually close to the target values, and the unbalanced displacements of the structure under target pre-stresses were obtained. The results of examples show that the cable-truss frame with reasonable shape is determined by one-time, and the self-stress mode is obtained after about 5 iterations. The largest error between the results of the proposed method and those of the existed method is 0.48%, meeting the engineering requirements. After the self-stress mode obtained from the plain cable-truss frame is put into the spatial cable-truss tensile structure, the calculation results are close, and the largest error of the internal forces is 0.030%. The unbalanced displacements are small, proving the feasibility of the assembly of spatial cable-truss tensile structures by plain cable-truss frames.

参考文献/References:

[1] Pellegrino S. Structural computations with the singular value decomposition of the equilibrium matrix[J]. International Journal of Solids and Structures, 1993, 30(21): 3025-3035. DOI:10.1016/0020-7683(93)90210-x.
[2] Yuan X F, Chen L M, Dong S L. Prestress design of cable domes with new forms[J]. International Journal of Solids and Structures, 2007, 44(9): 2773-2782. DOI:10.1016/j.ijsolstr.2006.08.026.
[3] Guo J M, Jiang J Q. An algorithm for calculating the feasible pre-stress of cable-struts structure[J]. Engineering Structures, 2016, 118: 228-239. DOI:10.1016/j.engstruct.2016.03.058.
[4] Zhang P, Feng J. Initial prestress design and optimization of tensegrity systems based on symmetry and stiffness[J]. International Journal of Solids and Structures, 2017, 106/107: 68-90. DOI:10.1016/j.ijsolstr.2016.11.030.
[5] Wang Z H, Yuan X F, Dong S L. Simple approach for force finding analysis of circular Geiger domes with consideration of self-weight[J]. Journal of Constructional Steel Research, 2010, 66(2): 317-322. DOI:10.1016/j.jcsr.2009.09.010.
[6] 董石麟,朱谢联,涂源,等.蜂窝双撑杆型索穹顶的构形和预应力态简捷计算法以及参数灵敏度分析[J].建筑结构学报,2019,40(2):128-135. DOI:10.14006/j.jzjgxb.2019.02.011.
Dong S L, Zhu X L, Tu Y, et al. Configuration, simplified calculation method and parameter sensitivity analysis on prestress distribution of honeycomb-type cable dome with two struts[J]. Journal of Building Structures, 2019, 40(2): 128-135. DOI:10.14006/j.jzjgxb.2019.02.011. (in Chinese)
[7] 赵宴刚,尚仁杰.基于力传递的混合型索穹顶初始预应力计算方法[J].钢结构,2017,32(10):13-18. DOI:10.13206/j.gjg201710003.
Zhao Y G, Shang R J. A method to calculate the initial prestress of hybrid cable domes based on force transfer[J]. Steel Construction, 2017, 32(10): 13-18. DOI:10.13206/j.gjg201710003. (in Chinese)
[8] 田广宇,郭彦林,王昆.车辐式结构找形分析的逐点去约束法[J].西安建筑科技大学学报(自然科学版),2010,42(2):153-158. DOI:10.3969/j.issn.1006-7930.2010.02.001.
Tian G Y, Guo Y L, Wang K. Constraints removal method for form-finding problem of spoke structures[J]. Journal of Xi’an University of Architecture & Technology(Natural Science Edition), 2010, 42(2): 153-158. DOI:10.3969/j.issn.1006-7930.2010.02.001. (in Chinese)
[9] 向新岸,冯远,董石麟.一种索穹顶结构初始预应力分布确定的新方法——预载回弹法[J].工程力学,2019,36(2):45-52. DOI: 10.6052/j.issn.1000-4750.2017.12.0971.
Xiang X A, Feng Y, Dong S L. A new method of determining the initial prestress distribution of cable domes: The preload and rebound method[J]. Engineering Mechanics, 2019, 36(2): 45-52. DOI:10.6052/j.issn.1000-4750.2017.12.0971. (in Chinese)
[10] Liu R J, Xue S D, Li X Y, et al. Preventing disproportionate displacements in an annular crossed cable-truss structure[J]. International Journal of Space Structures, 2017, 32(1): 3-10. DOI:10.1177/0266351117694975.
[11] 沈世钊,徐崇宝,赵臣.悬索结构设计[M].北京:中国建筑工业出版社,2006:17-19.
[12] 郭彦林,田广宇.索结构体系、设计原理与施工控制[M].北京:科学出版社,2014:226-241.

备注/Memo

备注/Memo:
收稿日期: 2019-08-25.
作者简介: 鲁建(1990—),男,博士生;薛素铎(联系人),男,博士,教授,博士生导师,sdxue@bjut.edu.cn.
基金项目: 国家自然科学基金资助项目(51778017)、北京市自然科学基金资助项目(8172011).
引用本文: 鲁建,薛素铎,李雄彦,等.索桁张拉结构形状设计及找力分析[J].东南大学学报(自然科学版),2020,50(2):244-250. DOI:10.3969/j.issn.1001-0505.2020.02.006.
更新日期/Last Update: 2020-03-20