[1]陈建稳,吴善祥,赵兵,等.经编织物类复合膜材拉伸力学性能的温度效应[J].东南大学学报(自然科学版),2020,50(2):251-259.[doi:10.3969/j.issn.1001-0505.2020.02.007]
 Chen Jianwen,Wu Shanxiang,Zhao Bing,et al.Temperature effect on tensile properties of warp-knitted composite fabrics[J].Journal of Southeast University (Natural Science Edition),2020,50(2):251-259.[doi:10.3969/j.issn.1001-0505.2020.02.007]
点击复制

经编织物类复合膜材拉伸力学性能的温度效应()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第2期
页码:
251-259
栏目:
材料科学与工程
出版日期:
2020-03-20

文章信息/Info

Title:
Temperature effect on tensile properties of warp-knitted composite fabrics
作者:
陈建稳1吴善祥1赵兵2关晓宇1夏雨凡1王明洋3
1 南京理工大学理学院, 南京 210094; 2 上海交通大学空间结构研究中心, 上海 200030; 3 南京理工大学机械工程学院, 南京 210094
Author(s):
Chen Jianwen1 Wu Shanxiang1 Zhao Bing2 Guan Xiaoyu1 Xia Yufan1 Wang Mingyang3
1 School of Science, Nanjing University of Science and Technology, Nanjing 210094, China
2 Space Structures Research Center, Shanghai Jiao Tong University, Shanghai 200030, China
3 School of Mechanical and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
关键词:
经编膜材 高温 非线性 强度 刚度 破坏形态
Keywords:
warp-knitted fabric high temperature nonlinear strength stiffness failure morphology
分类号:
TU502.6
DOI:
10.3969/j.issn.1001-0505.2020.02.007
摘要:
为了得到经编织物膜材在高温下的拉伸力学性能,以典型经编织物膜材PVDF Shelter-Rite#9032为研究对象,进行了5种温度(10、25、50、75、100 ℃)下的单轴拉伸性能试验及破坏后试样截面电镜扫描测试,系统分析了膜材强度、刚度、变形及破坏形态特征随温度变化规律.研究结果表明,高温可明显弱化组分材料强度、刚度及组分界面间变形协调能力,随温度升高膜材应力-应变曲线的初始线性段范围减小且其后续特征段刚度及抗拉强度降低显著,其中与10 ℃时相比,100 ℃时膜材Ⅲ阶段纬向刚度及抗拉强度的降幅分别可达50.64%与39.78%.各温度下经向刚度随应变均呈现出降-升-降的S形特征,而纬向因纱线拉伸变形历程中存在卷曲伸展阶段,配合材料的高温效应,其刚度曲线表现出S形到M形的转变特征.温度升高使得基体塑性变形能力增强、纱线与基体间应力集中效应减弱,断口呈现出粗糙化及纱线抽出特征,100 ℃时基体和纱线层间黏结被严重削弱,端部出现明显脱黏与滑移现象.
Abstract:
To obtain the tensile mechanical properties of warp-knitted fabrics at high temperatures, a series of uniaxial tensile tests at 10, 25, 50, 75 and 100 ℃ and sectional electron microscopy scan of the sample after destruction were performed on a typical warp-knitted composite fabrics, i.e., PVDF Shelter-Rite#9032. The variations of strength, stiffness, deformation, and failure morphology of the studied material at different temperatures were systematically analyzed. The results show that the strength and the stiffness of the component materials, and the interfacial deformation coordination ability are significantly weakened at the high temperature. With the increase of the temperature, the range of the initial linear section of the material stress-strain curve decreases, and the stiffness and the tensile strength of the subsequent characteristic sections decrease significantly. Compared with those at 10 ℃, the weft stiffness and the weft tensile strength of the membrane material in stage Ⅲ at 100 ℃ can be reduced by 50.64% and 39.78%, respectively. The warp stiffness, at each temperature, exhibits a down-up-down S-shaped characteristic with the strain, and when the weft yarn has a stage from curl to straight in the deformation process, the weft stiffness curve shows the transition characteristics from S shape to M shape. The plastic deformation ability of the substrate is enhanced, and the stress concentration effect between the yarn and the substrate is weakened with the increasing temperature, and the fracture of the sample exhibits roughness and yarn pull-out characteristics. The bond between the substrate and the yarn of the composite fabric is severely weakened at 100 ℃, and there are obvious peeling and slipping debonding phenomena at the clamping end of the composite fabric during the tests.

参考文献/References:

[1] Ambroziak A, Kosowski P. Mechanical properties for preliminary design of structures made from PVC coated fabric[J].Construction and Building Materials, 2014, 50: 74-81. DOI:10.1016/j.conbuildmat.2013.08.060.
[2] 赵大鹏. 大型充气膜结构特性分析与高强膜材试验研究[D]. 上海: 上海交通大学, 2007.
  Zhao D P. Structural performances analysis of large pneumatic membrane structure and experiment on high-strength fabrics[D]. Shanghai: Shanghai Jiao Tong University, 2007.(in Chinese)
[3] Chen J W, Chen W J, Zhao B, et al. Mechanical responses and damage morphology of laminated fabrics with a central slit under uniaxial tension:A comparison between analytical and experimental results[J]. Construction and Building Materials, 2015, 101: 488-502. DOI:10.1016/j.conbuildmat.2015.10.134.
[4] 陈建稳, 陈务军, 侯红青, 等. 织物类蒙皮材料中心切缝撕裂破坏强度分析[J]. 复合材料学报, 2016, 33(3): 666-674. DOI:10.13801/j.cnki.fhclxb.20150910.001.
Chen J W, Chen W J, Hou H Q, et al. Analysis on tearing strength of envelope fabric materials under central crack tearing[J]. Acta Materiae Compositae Sinica, 2016, 33(3): 666-674. DOI:10.13801/j.cnki.fhclxb.20150910.001. (in Chinese)
[5] 张营营, 张其林, 周传志. PTFE膜材的单向拉伸性能[J]. 建筑材料学报, 2010, 13(4): 535-539. DOI:10.3969/j.issn.1007-9629.2010.04.024.
Zhang Y Y, Zhang Q L, Zhou C Z. Uniaxial tensile properties of PTFE membrane material[J]. Journal of Building Materials, 2010, 13(4): 535-539. DOI:10.3969/j.issn.1007-9629.2010.04.024. (in Chinese)
[6] 矫卫红, 陈南梁. 经编双轴向织物用作涂层基布的性能优势[J]. 东华大学学报(自然科学版), 2004, 30(6): 91-95.
  Jiao W H, Chen N L. Performance advantages of warp knitting bi-axial fabrics used as coating substrates[J]. Journal of Donghua University(Natural Science), 2004, 30(6): 91-95.(in Chinese)
[7] 谈亚飞. 经编复合材料的市场现状与发展趋势[J]. 针织工业, 2010(2): 17-20. DOI:10.3969/j.issn.1000-4033.2010.02.009.
Tan Y F. The present market situation and developing trend of the warp knitted compositesfabric[J].Knitting Industries, 2010(2): 17-20. DOI:10.3969/j.issn.1000-4033.2010.02.009. (in Chinese)
[8] Zhang Y Y, Xu S S, Xue J G, et al. Anisotropic mechanical properties and constitutive relations of PTFE coated glass fibers[J].Composite Structures, 2017, 179: 601-616. DOI:10.1016/j.compstruct.2017.07.076.
[9] 李龙, 段跃新, 李超, 等. 双轴向经编织物T700/BMI6421复合材料力学性能[J]. 复合材料学报, 2011, 28(6): 92-97. DOI:10.13801/j.cnki.fhclxb.2011.06.019.
Li L, Duan Y X, Li C, et al. Mechanical properties of bi-axial warp-knitted fabric T700/BMI6421 composites[J]. Acta Materiae Compositae Sinica, 2011, 28(6): 92-97. DOI:10.13801/j.cnki.fhclxb.2011.06.019. (in Chinese)
[10] 王利钢, 陈务军, 高成军. 聚酯纤维机织物-聚氯乙烯-聚偏氟乙烯膜材双轴剪切力学性能试验[J]. 复合材料学报, 2015, 32(4): 1118-1124. DOI:10.13801/j.cnki.fhclxb.20140923.002.
Wang L G, Chen W J, Gao C J. Test on biaxial shear mechanical performance of polyester fabric-polyvinyl chloride-polyvinylidene fluoride membrane[J]. Acta Materiae Compositae Sinica, 2015, 32(4): 1118-1124. DOI:10.13801/j.cnki.fhclxb.20140923.002. (in Chinese)
[11] 李力, 赵海涛, 陈吉安, 等. 基于多尺度方法的纤维织物增强柔性复合材料拉伸模量预测[J]. 复合材料学报, 2016, 33(10): 2312-2318. DOI:10.13801/j.cnki.fhclxb.20151230.001.
Li L, Zhao H T, Chen J A, et al. Tensile modulus prediction on fiber fabric reinforced flexible composite based on multi-dimension method[J]. Acta Materiae Compositae Sinica, 2016, 33(10): 2312-2318. DOI:10.13801/j.cnki.fhclxb.20151230.001. (in Chinese)
[12] 陈务军. 膜结构工程设计[M]. 北京: 中国建筑工业出版社, 2005: 17-22.
[13] 张营营, 张其林, 周传志. PTFE膜材的单向拉伸性能[J]. 建筑材料学报, 2010, 13(4): 535-539. DOI:10.3969/j.issn.1007-9629.2010.04.024.
Zhang Y Y, Zhang Q L, Zhou C Z. Uniaxial tensile properties of PTFE membrane material[J]. Journal of Building Materials, 2010, 13(4): 535-539. DOI:10.3969/j.issn.1007-9629.2010.04.024. (in Chinese)
[14] Zhu D J, Soranakom C, Mobasher B, et al. Experimental study and modeling of single yarn pull-out behavior of kevlar? 49 fabric[J].Composites Part A: Applied Science and Manufacturing, 2011, 42(7): 868-879. DOI:10.1016/j.compositesa.2011.03.017.
[15] Wang S N, Sun B Z, Gu B H. Analytical modeling on mechanical responses and damage morphology of flexible woven composites under trapezoid tearing[J].Textile Research Journal, 2013, 83(12): 1297-1309. DOI:10.1177/0040517512468824.
[16] 赵飞龙, 陈务军, 何艳丽, 等. PVDF涂层织物膜材和节点高温力学性能试验研究[J]. 空间结构, 2014, 20(3): 42-47. DOI:10.13849/j.issn.1006-6578.2014.03.042.
Zhao F L, Chen W J, He Y L, et al. Experiments on the mechanical properties of PVDF coated fabric and joints under high temperature[J]. Spatial Structures, 2014, 20(3): 42-47. DOI:10.13849/j.issn.1006-6578.2014.03.042. (in Chinese)
[17] 张营营, 张其林, 周传志. 温度对PTFE膜材料力学性能的影响[J]. 建筑材料学报, 2012, 15(4): 478-483. DOI:10.3969/j.issn.1007-9629.2012.04.008.
Zhang Y Y, Zhang Q L, Zhou C Z. Effects of temperature on mechanical properties of PTFE coated fabrics[J]. Journal of Building Materials, 2012, 15(4): 478-483. DOI:10.3969/j.issn.1007-9629.2012.04.008. (in Chinese)
[18] Vieille B, Aucher J, Taleb L. Influence of temperature on the behavior of carbon fiber fabrics reinforced PPS laminates[J].Materials Science and Engineering: A, 2009, 517(1/2): 51-60. DOI:10.1016/j.msea.2009.03.038.
[19] Wang Y, Zhang J P, Fang G D, et al. Influence of temperature on the impact behavior of woven-ply carbon fiber reinforced thermoplastic composites[J].Composite Structures, 2018, 185: 435-445. DOI:10.1016/j.compstruct.2017.11.056.
[20] 张营营, 许珊珊, 徐俊豪, 等. 聚四氟乙烯膜材黏弹性本构关系[J]. 建筑结构学报, 2016, 37(6): 245-252. DOI:10.14006/j.jzjgxb.2016.06.030.
Zhang Y Y, Xu S S, Xu J H, et al. Viscoelastic constitutive relations of polytetrafluoroethylene coated fabrics[J]. Journal of Building Structures, 2016, 37(6): 245-252. DOI:10.14006/j.jzjgxb.2016.06.030. (in Chinese)
[21] 肖建春, 徐灏, 刘佳坤, 等. 太阳强烈辐射对大跨度球面网壳静力性能的影响[J]. 固体力学学报, 2010, 31(S1): 275-280. DOI:10.19636/j.cnki.cjsm42-1250/o3.2010.s1.047.
Xiao J C, Xu H, Liu J K, et al. The influence of intense solar radiation on long-span spatial steel structures[J]. Chinese Journal of Solid Mechanics, 2010, 31(S1): 275-280. DOI:10.19636/j.cnki.cjsm42-1250/o3.2010.s1.047. (in Chinese)
[22] Alinia M M, Kashizadeh S. Effect of flexibility of substructures upon thermal behaviour of spherical double layer space truss domes. Part Ⅰ: Uniform thermal loading[J].Journal of Constructional Steel Research, 2006, 62(4): 359-368. DOI:10.1016/j.jcsr.2005.07.008.
[23] 杨秉, 杨健, 李小将, 等. 临近空间飞艇运行环境及其影响[J]. 航天器环境工程, 2008, 25(6): 555-557. DOI:10.3969/j.issn.1673-1379.2008.06.013.
Yang B, Yang J, Li X J, et al. The operating environment of near-space and its effects on the airship[J]. Spacecraft Environment Engineering, 2008, 25(6): 555-557. DOI:10.3969/j.issn.1673-1379.2008.06.013. (in Chinese)
[24] Harada K, Eguchi K, Sano M, et al. Experimental study of thermal modeling for stratospheric platform airship [ C ]// Proceedings of AIAA’s 3rd Annual Aviation Technology, Integration, and Operations(ATIO)Conferences. Denver, Colorado, USA, 2003:6833. DOI: 10.2514/6.2003-6833.
[25] 董韵,李炜.经编多轴向织物[J].玻璃钢/复合材料,2006(1):56-57.DOI:10.3969/j.issn.1003-0999.2006.01.017.
Dong Y, Li W.Warp-knitted multiaxial fabric[J]. Fiber Reinforced Plastics/Composites, 2006(1):56-57. DOI:10.3969/j.issn.1003-0999.2006.01.017. (in Chinese)
[26] BSI. BS EN ISO 1421 Rubber- or plastics-coated fabrics. Determination of tensile strength and elongation at break[S]. London: BSI British Standards, 1998. DOI:10.3403/01435212.
[27] 金日光, 华幼卿. 高分子物理[M]. 2版. 北京:化学工业出版社, 2000: 205-206.
[28] 张营营, 张其林. 涂层织物类建筑膜材料的力学性能[M]. 徐州: 中国矿业大学出版社, 2013: 34-36.

相似文献/References:

[1]金祖权,孙伟,侯保荣,等.混凝土的高温变形与微结构演化[J].东南大学学报(自然科学版),2010,40(3):619.[doi:10.3969/j.issn.1001-0505.2010.03.035]
 Jin Zuquan,Sun Wei,Hou Baorong,et al.Deformation and microstructure evolution of concrete subjected to elevated temperature[J].Journal of Southeast University (Natural Science Edition),2010,40(2):619.[doi:10.3969/j.issn.1001-0505.2010.03.035]
[2]李敏,钱春香.高强混凝土受火后抗渗透性能衰减规律[J].东南大学学报(自然科学版),2006,36(5):825.[doi:10.3969/j.issn.1001-0505.2006.05.029]
 Li Min,Qian Chunxiang.Degradation of permeability resistance of high strength concrete after exposed to fire[J].Journal of Southeast University (Natural Science Edition),2006,36(2):825.[doi:10.3969/j.issn.1001-0505.2006.05.029]
[3]范圣刚,舒赣平,霍昌盛.高强度螺栓受剪连接抗火性能试验研究[J].东南大学学报(自然科学版),2012,42(6):1180.[doi:10.3969/j.issn.1001-0505.2012.06.029]
 Fan Shenggang,Shu Ganping,Huo Changsheng.Experimental study on fire-resistant behaviour of high-strength bolted shear connections[J].Journal of Southeast University (Natural Science Edition),2012,42(2):1180.[doi:10.3969/j.issn.1001-0505.2012.06.029]
[4]范敏,余新泉,薛烽.Fe3Al/TiC复合材料的耐高温冲蚀性能[J].东南大学学报(自然科学版),1999,29(6):136.[doi:10.3969/j.issn.1001-0505.1999.06.029]
 Fan Min,Yu Xinquan,Xue Feng.Erosion Resistance of Fe3Al/TiC Composite at High Temperatures[J].Journal of Southeast University (Natural Science Edition),1999,29(2):136.[doi:10.3969/j.issn.1001-0505.1999.06.029]

备注/Memo

备注/Memo:
收稿日期: 2019-08-23.
作者简介: 陈建稳(1981—),男,博士,副教授,jianwench@njust.edu.cn.
基金项目: 国家自然科学基金资助项目(51608270)、江苏省基础研究计划资助项目(BK20191290)、中央高校基本科研业务费专项资金资助项目(30920021143)、中国博士后科学基金资助项目(2016M601816,2017T100371).
引用本文: 陈建稳,吴善祥,赵兵,等.经编织物类复合膜材拉伸力学性能的温度效应[J].东南大学学报(自然科学版),2020,50(2):251-259. DOI:10.3969/j.issn.1001-0505.2020.02.007.
更新日期/Last Update: 2020-03-20