[1]操礼林,吕亚兵,曹栋,等.行人动力学参数对大跨简支人行桥人致振动的影响分析[J].东南大学学报(自然科学版),2020,50(2):260-266.[doi:10.3969/j.issn.1001-0505.2020.02.008]
 Cao Lilin,Lü Yabing,Cao Dong,et al.Influence analysis of pedestrian dynamic parameters on human-induced vibration of long span simply supported footbridge[J].Journal of Southeast University (Natural Science Edition),2020,50(2):260-266.[doi:10.3969/j.issn.1001-0505.2020.02.008]
点击复制

行人动力学参数对大跨简支人行桥人致振动的影响分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第2期
页码:
260-266
栏目:
土木工程
出版日期:
2020-03-20

文章信息/Info

Title:
Influence analysis of pedestrian dynamic parameters on human-induced vibration of long span simply supported footbridge
作者:
操礼林1吕亚兵1曹栋1李爱群23
1江苏大学土木工程与力学学院, 镇江 212013 ; 2东南大学土木工程学院, 南京 210096 ; 3北京建筑大学土木与交通工程学院, 北京 100044
Author(s):
Cao Lilin1 Lü Yabing1 Cao Dong1 Li Aiqun23
1Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013, China
2School of Civil Engineering, Southeast University, Nanjing 210096, China
3 School of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
关键词:
行人动力学参数 人行桥 人行荷载 人-结构相互作用 人致振动
Keywords:
pedestrian dynamic parameters footbridge walking load human-structure interaction human-induced vibration
分类号:
TU311.3
DOI:
10.3969/j.issn.1001-0505.2020.02.008
摘要:
为研究行人动力学参数对大跨结构人致振动的影响,采用等效人体模型参数识别试验研究了人体模型的自振频率和阻尼比,编程求解了考虑人-结构竖向相互作用的人行桥人致振动方程,讨论了人体质量、人体刚度、人体阻尼及人行荷载等行人动力学参数对人行桥动力特性及人致振动响应的影响规律.结果表明,人行荷载模型中人体质量可取中国男性居民平均质量66.2 kg.等效人体模型的自振频率和阻尼比分别取为5.15 Hz和35.62%.人行荷载作用下,人行桥一阶瞬时频率先减小后增大,一阶瞬时阻尼比先增大后减小.随着人体质量或人体等效阻尼的减小,瞬时阻尼比和频率的变化幅度均有所减小,但随着人体等效刚度的减小,两者的变化幅度均有所增大.人行桥跨中均方根加速度响应随着人体质量或人体等效刚度的增大也相应增大,而人体等效阻尼对人行桥加速度响应的影响较小.采用不同人行荷载模型计算的人行桥均方根加速度最大值是最小值的1.83倍.
Abstract:
To study the effect of pedestrian dynamic parameters on human-induced vibration of long-span structures, the natural vibration frequency and the damping ratio of human body model were studied by the parameter identification tests with the equivalent human body model. The human-induced vibration equation considering the vertical interaction between the pedestrian and the structure was solved by programming. The effects of the pedestrian dynamic parameters such as the body weight, the equivalent stiffness of human body, the equivalent damping of human body and the walking load on the dynamic characteristics of the footbridge and the human-induced vibration responses were discussed. The results show that the average weight of Chinese male residents of 66.2 kg can be taken as the body weight in the walking load model. The natural vibration frequency and the damping ratio of the equivalent human model are 5.15 Hz and 35.62%, respectively. Under the walking load, the first-order instantaneous frequency of the footbridge decreases first and then increases, and the first-order instantaneous damping ratio changes in the opposite way. The variation ranges of the instantaneous damping ratio and the frequency decrease with the decrease of the pedestrian weight or the equivalent damping of human body, but increase with the decrease of the equivalent stiffness of human body. The root mean square acceleration response of the footbridge increases with the increase of the body weight or the equivalent stiffness of human body. However, the effect of the equivalent damping of human body on the acceleration response of the footbridge is relatively small. The maximum of the root mean square acceleration difference of the footbridge calculated by different walking load models is 1.83 times of the minimum.

参考文献/References:

[1] 马斐,张志强,张晓峰,等.高铁站房大跨钢楼盖行车和人群荷载激励下振动响应实测与分析[J].建筑结构学报,2018,39(1):109-119.DOI:10.14006/j.jzjgxb.2018.01.013.
Ma F,Zhang Z Q,Zhang X F,et al.Vibration response measurement and analysis of large-span steel floor structure at high-speed rail station under moving train and crowd excitations[J].Journal of Building Structures,2018,39(1):109-119.DOI:10.14006/j.jzjgxb.2018.01.013. (in Chinese)
[2] Zhang S G,Xu L,Qin J W.Vibration of lightweight steel floor systems with occupants:Modelling,formulation and dynamic properties[J].Engineering Structures,2017,147:652-665.DOI:10.1016/j.engstruct.2017.06.008.
[3] 谢伟平,冯金鹏,何卫.基于自激励人体模型的人-结构竖向相互作用研究[J].振动与冲击,2017,36(21):28-33.DOI:10.13465/j.cnki.jvs.2017.21.005.
Xie W P,Feng J P,He W.Vertical human-structure interaction based on a self-exciting human model[J].Journal of Vibration and Shock,2017,36(21):28-33.DOI:10.13465/j.cnki.jvs.2017.21.005. (in Chinese)
[4] van Nimmen K,Lombaert G,de Roeck G,et al.Vibration serviceability of footbridges:Evaluation of the current codes of practice[J].Engineering Structures,2014,59:448-461.DOI:10.1016/j.engstruct.2013.11.006.
[5] 聂建国,陈宇,樊健生.步行荷载作用下单跨人行桥振动的均方根加速度反应谱法[J].土木工程学报,2010,43(9):109-116,130.DOI:10.15951/j.tmgcxb.2010.09.002.
Nie J G,Chen Y,Fan J S.RMS acceleration response spectrum method for single-span footbridges under pedestrian load[J].China Civil Engineering Journal,2010,43(9):109-116,130.DOI:10.15951/j.tmgcxb.2010.09.002. (in Chinese)
[6] ?ivanovi S, Pavic A,Reynolds P.Vibration serviceability of footbridges under human-induced excitation:A literature review[J].Journal of Sound and Vibration,2005,279(1/2):1-74.DOI:10.1016/j.jsv.2004.01.019.
[7] Racic V,Pavic A,Brownjohn J M W.Experimental identification and analytical modelling of human walking forces:Literature review[J].Journal of Sound and Vibration,2009,326(1/2):1-49.DOI:10.1016/j.jsv.2009.04.020.
[8] 樊健生,陈宇,聂建国.人行桥标准行人激励荷载的构建与验证[J].计算力学学报,2012,29(4):538-544.
  Fan J S,Chen Y,Nie J G.Modeling and confirmation of pedestrian induced walking load on footbridge[J].Chinese Journal of Computational Mechanics,2012,29(4):538-544.(in Chinese)
[9] 陈隽,彭怡欣,王玲.基于步态分析技术的三向单足落步荷载曲线试验建模[J].土木工程学报,2014,47(3):79-87.DOI:10.15951/j.tmgcxb.2014.03.012.
Chen J,Peng Y X,Wang L.Experimental investigation and mathematical modeling of single footfall load using motion capture technology[J].China Civil Engineering Journal,2014,47(3):79-87.DOI:10.15951/j.tmgcxb.2014.03.012. (in Chinese)
[10] Ebrahimpour A,Hamam A,Sack R L,et al.Measuring and modeling dynamic loads imposed by moving crowds[J].Journal of Structural Engineering,1996,122(12):1468-1474.DOI:10.1061/(asce)0733-9445(1996)122:12(1468).
[11] Sachse R,Pavic A,Reynolds P.Parametric study of modal properties of damped two-degree-of-freedom crowd-structure dynamic systems[J].Journal of Sound and Vibration,2004,274(3/4/5):461-480.DOI:10.1016/j.jsv.2003.08.052.
[12] 朱前坤,刘路路,杜永峰,等.考虑行人-结构相互作用的悬挑钢筋桁架楼承板振动控制研究[J].建筑结构学报,2018,39(1):99-108.DOI:10.14006/j.jzjgxb.2018.01.012.
Zhu Q K,Liu L L,Du Y F,et al.Human-induced vibration and control for cantilever steel bar truss deck slab based on pedestrain-structure interaction[J].Journal of Building Structures,2018,39(1):99-108.DOI:10.14006/j.jzjgxb.2018.01.012. (in Chinese)
[13] 袁刚,张木勋,王中琴,等.正常人足底压力分布及其影响因素分析[J].中华物理医学与康复杂志,2004,26(3):156-159.
  Yuan G,Zhang M X,Wang Z Q,et al.The distribution of foot pressure and its influence factors in Chinese people[J].Chinese Journal of Physical Medicine and Rehabilitation,2004,26(3):156-159.(in Chinese)
[14] 操礼林.高铁候车厅大跨楼盖人致振动响应分析与减振控制研究[D].南京:东南大学,2016.
  Cao L L.Research on human-induced vibration response and vibration control of long-span floor in high-speed railway waiting hall[D].Nanjing:Southeast University,2016.(in Chinese)
[15] 操礼林,曹栋,于国军.人-结构竖向相互作用两类简化模型分析[J].西南交通大学学报,2018,53(6):1166-1172.
  Cao L L,Cao D,Yu G J.Two simplified models for human-structure vertical interaction[J].Journal of Southwest Jiaotong University,2018,53(6):1166-1172.(in Chinese)
[16] 张梦诗,陈隽,徐若天.竖向行人-结构相互作用中的行人MD及SMD模型参数识别[J].振动工程学报,2016,29(5):814-821.DOI:10.16385/j.cnki.issn.1004-4523.2016.05.008.
Zhang M S,Chen J,Xu R T.MD and SMD model parameters of pedestrians for vertical human-structure interaction[J].Journal of Vibration Engineering,2016,29(5):814-821.DOI:10.16385/j.cnki.issn.1004-4523.2016.05.008. (in Chinese)
[17] 国家卫生计生委疾病预防控制局.中国居民营养与慢性病状况报告(2015年)[M].北京:人民卫生出版社,2016.
[18] 陈隽,王浩祺,彭怡欣.行走激励的傅里叶级数模型及其参数的实验研究[J].振动与冲击,2014,33(8):11-15,28.DOI:10.13465/j.cnki.jvs.2014.08.003.
Chen J,Wang H Q,Peng Y X.Experimental investigation on Fourier-series model of walking load and its coefficients[J].Journal of Vibration and Shock,2014,33(8):11-15,28.DOI:10.13465/j.cnki.jvs.2014.08.003. (in Chinese)
[19] 魏结强.单人行走荷载模拟及大跨楼盖振动响应与控制研究[D].南京:东南大学,2015.
  Wei J Q.Simulation of single human walking load and human-induced vibration response and control for large-span floors[D].Nanjing:Southeast University,2015.(in Chinese)
[20] Yong P.Improved floor vibration prediction methodologies[C]// Proceedings of ARUP Vibration Seminar on Engineering for Structure Vibration-Current Developments in Research and Practice.London,UK,2001:5-10.
[21] 谢伟平,何卫,艾康伟.车站结构人行荷载特性研究[J].工程力学,2012,29(12):256-264.
  Xie W P,He W,Ai K W.Study on characteristics of pedestrian loads of railway station structures[J].Engineering Mechanics,2012,29(12):256-264.(in Chinese)

相似文献/References:

[1]操礼林,曹栋,张志强,等.随机人群行走下人行桥动力特性参数及加速度响应[J].东南大学学报(自然科学版),2018,48(6):1028.[doi:10.3969/j.issn.1001-0505.2018.06.007]
 Cao Lilin,Cao Dong,Zhang Zhiqiang,et al.Dynamic characteristic parameter and acceleration response of footbridge under random crowd walking[J].Journal of Southeast University (Natural Science Edition),2018,48(2):1028.[doi:10.3969/j.issn.1001-0505.2018.06.007]

备注/Memo

备注/Memo:
收稿日期: 2019-08-28.
作者简介: 操礼林(1979—),男,博士,副教授, cll@ujs.edu.cn.
基金项目: 国家自然科学基金资助项目(51408267)、江苏省高校自然科学基金资助项目(14KJB560005).
引用本文: 操礼林,吕亚兵,曹栋,等.行人动力学参数对大跨简支人行桥人致振动的影响分析[J].东南大学学报(自然科学版),2020,50(2):260-266. DOI:10.3969/j.issn.1001-0505.2020.02.008.
更新日期/Last Update: 2020-03-20