[1]郭文华,洪新民,王子豪.摩擦摆支座对高速列车-简支梁桥耦合系统的减隔震分析[J].东南大学学报(自然科学版),2020,50(2):267-273.[doi:10.3969/j.issn.1001-0505.2020.02.009]
 Guo Wenhua,Hong Xinmin,Wang Zihao.Seismic isolation analysis of friction pendulum bearing on coupling system for high-speed train and simply supported beam bridge[J].Journal of Southeast University (Natural Science Edition),2020,50(2):267-273.[doi:10.3969/j.issn.1001-0505.2020.02.009]
点击复制

摩擦摆支座对高速列车-简支梁桥耦合系统的减隔震分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第2期
页码:
267-273
栏目:
交通运输工程
出版日期:
2020-03-20

文章信息/Info

Title:
Seismic isolation analysis of friction pendulum bearing on coupling system for high-speed train and simply supported beam bridge
作者:
郭文华洪新民王子豪
中南大学土木工程学院, 长沙 410075
Author(s):
Guo Wenhua Hong Xinmin Wang Zihao
School of Civil Engineering, Central South University, Changsha 410075, China
关键词:
摩擦摆支座 高速列车-多跨简支梁桥耦合系统 减隔震 虚刚体 地震作用
Keywords:
friction pendulum bearing(FPB) high-speed train and multi-span simply supported beam bridge coupling system seismic isolation virtual rigid body seismic action
分类号:
U24
DOI:
10.3969/j.issn.1001-0505.2020.02.009
摘要:
为研究摩擦摆支座(FPB)对地震下高速列车-简支梁桥耦合系统的减隔震作用,基于ANSYS和SIMPACK平台,建立了高速列车-多跨简支梁桥耦合系统的三维有限元模型.模型中采用104#力元模拟FPB,将轨道不平顺和地震力作为耦合系统的激励,开展了FPB对地震荷载下车-简支梁桥耦合系统的减隔震研究.结果表明,在El Centro地震波作用下,车-桥系统的动力响应随着车速、地震强度、墩高度的增大而增大.地震强度小于0.12g时,FPB能减小车-桥系统除墩顶横向加速度以外的其他动力响应, 车速越大、墩身越高, FPB的减振效果越显著;地震强度大于0.12g时,FPB会增大车桥系统的动力响应.建议在高速铁路简支梁桥减隔震设计中,墩高不宜超过16 m,摩擦摆支座的参数应根据具体桥梁进行选择.
Abstract:
To study the seismic isolation effect of friction pendulum bearing(FPB)on the dynamic response of the coupling system of high-speed trains and simply supported beam bridges under earthquake, based on ANSYS and SIMPACK software platforms, a three-dimensional finite element model for a coupling system in a high-speed train and a multi-span simply supported beam bridge was established. In the model, the FPB was simulated by 104# force element. The track irregularities and the seismic force were applied to the model as the excitation. The seismic isolation of FPB in the coupling system of the high-speed train and a simply supported beam bridge under the seismic action was studied. The results show that under the action of El Centro seismic wave, the dynamic response of the train-bridge system increases with the increase of the train speed, the seismic intensity and the pier height. When the seismic intensity is less than 0.12g, FPB can reduce the dynamic response of the train-bridge system except the lateral acceleration of the pier top. The higher the speed and the pier, the greater the seismic isolation of FPB. When the seismic intensity is more than 0.12g, FPB can increase the dynamic response of the train-bridge system. In the seismic isolation design of the simply supported beam bridge on high-speed railway, the pier height should be less than 16 m, and the parameters of FPB should be selected according to the bridges.

参考文献/References:

[1] He X H, Wu T, Zou Y F, et al. Recent developments of high-speed railway bridges in China[J]. Structure and Infrastructure Engineering, 2017, 13(12): 1584-1595. DOI:10.1080/15732479.2017.1304429.
[2] 石岩, 王东升, 韩建平, 等. 桥梁减隔震技术的应用现状与发展趋势[J]. 地震工程与工程振动, 2017, 37(5): 118-128. DOI:10.13197/j.eeev.2017.05.118.shiy.014.
Shi Y, Wang D S, Han J P, et al. Application status of seismic isolation for bridges and its development tendency[J]. Earthquake Engineering and Engineering Vibration, 2017, 37(5): 118-128. DOI:10.13197/j.eeev.2017.05.118.shiy.014. (in Chinese)
[3] Zayas V A, Low S S, Mahin S A. A simple pendulum technique for achieving seismic isolation[J]. Earthquake Spectra, 1990, 6(2): 317-333. DOI:10.1193/1.1585573.
[4] Luciana R B. Comparison of story drift demands of various control strategies for the seismic resistance of steel moment frames [C]// Proc of 12th WCEE. Auckland, New Zealand, 2000:12-20.
[5] Kravchuk N, Colquhoun R, Porbaha A. Development of a friction pendulum bearing base isolation system for earthquake engineering education [C]// Proceedings of the 2008 American Society for Engineering Education Pacific Southwest Annual Conference. Nashville, TN, USA, 2008: 22-25.
[6] Wang Y H, Feng Y, Wu J. A simplified simulation method of friction pendulum bearings[J]. Journal of Southeast University(English Edition), 2018, 34(4): 480-487. DOI: 10.3969/j.issn.1003-7985.2018.04.010.
[7] 占玉林, 张磊, 张强, 等. 摩擦摆支座参数对隔震桥梁地震响应的影响[J]. 桥梁建设, 2018, 48(3): 45-49.
  Zhan Y L, Zhang L, Zhang Q, et al. Effects of parameters of friction pendulum bearings on seismic responses of seismically isolated bridge[J]. Bridge Construction, 2018, 48(3): 45-49.(in Chinese)
[8] 张常勇, 钟铁毅, 杨海洋. 摩擦摆支座隔震连续梁桥地震能量反应研究[J]. 振动与冲击, 2017, 36(16): 63-67, 121. DOI:10.13465/j.cnki.jvs.2017.16.010.
Zhang C Y, Zhong T Y, Yang H Y. A study on seismic energy responses of a continuous girder bridge isolated by a friction pendulum system[J]. Journal of Vibration and Shock, 2017, 36(16): 63-67, 121. DOI:10.13465/j.cnki.jvs.2017.16.010. (in Chinese)
[9] Ates S. Investigation of effectiveness of double concave friction pendulum bearings[J]. Computers & Concrete, 2012, 9(3): 195-213. DOI:10.12989/cac.2012.9.3.195.
[10] 廖平, 赵人达, 贾毅, 等. 支座参数对韩江特大桥地震响应的影响[J]. 铁道建筑, 2017(3): 33-35.
  Liao P, Zhao R D, Jia Y, et al. Influence of bearing parameters on seismic response of Han river super large bridge[J]. Railway Engineering, 2017(3): 33-35.(in Chinese)
[11] Ren X X, Lu W S, Mosalam K M, et al. Similitude theory for scaled friction pendulum bearings for shaking table experiments[J]. Soil Dynamics and Earthquake Engineering, 2019, 121: 399-404. DOI:10.1016/j.soildyn.2019.03.011.
[12] Zhou Y, Chen P. Shaking table tests and numerical studies on the effect of viscous dampers on an isolated RC building by friction pendulum bearings[J]. Soil Dynamics and Earthquake Engineering, 2017, 100: 330-344. DOI:10.1016/j.soildyn.2017.06.002.
[13] 邓子铭, 郭向荣, 张志勇. 地震作用对钢桁梁桥车桥系统耦合振动的影响分析[J]. 中南大学学报(自然科学版), 2011, 42(1): 184-191.
  Deng Z M, Guo X R, Zhang Z Y. Coupled vibration of train-bridge system of steel truss bridge with seismic effect[J]. Journal of Central South University(Science and Technology), 2011, 42(1): 184-191.(in Chinese)
[14] Li Y L, Qiang S Z, Liao H L, et al. Dynamics of wind-rail vehicle-bridge systems[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2005, 93(6): 483-507. DOI:10.1016/j.jweia.2005.04.001.
[15] 王子豪. 摩擦摆式支座对地震作用下车-轨-桥耦合振动的影响研究 [D]. 长沙:中南大学, 2018.
  Wang Z H. Study of the influence of friction pendulum bearing on coupled vibration of train-track-bridge under earthquakes[D]. Changsha:Central South University, 2018.
[16] 郑晓龙, 金怡新. 摩擦单摆支座的设计与减隔震性能分析[J]. 铁道工程学报, 2014, 31(4): 81-87. DOI:10.3969/j.issn.1006-2106.2014.04.016.
Zheng X L, Jin Y X. Design and seismic isolation performance analysis of friction pendulum bearings[J]. Journal of Railway Engineering Society, 2014, 31(4): 81-87. DOI:10.3969/j.issn.1006-2106.2014.04.016. (in Chinese)

备注/Memo

备注/Memo:
收稿日期: 2019-08-02.
作者简介: 郭文华(1969—),男,博士,教授,博士生导师,whguo@126.com.
基金项目: 国家自然科学基金资助项目(51078356).
引用本文: 郭文华,洪新民,王子豪.摩擦摆支座对高速列车-简支梁桥耦合系统的减隔震分析[J].东南大学学报(自然科学版),2020,50(2):267-273. DOI:10.3969/j.issn.1001-0505.2020.02.009.
更新日期/Last Update: 2020-03-20