[1]曹小林,龚维明,戴国亮.水平往复荷载下FRPC桩与砂土的相互作用宏微观机理[J].东南大学学报(自然科学版),2020,50(2):274-279.[doi:10.3969/j.issn.1001-0505.2020.02.010]
 Cao Xiaolin,Gong Weiming,Dai Guoliang.Macro-micro interaction mechanism between FRPC piles and sand soils under horizontal reciprocating loads[J].Journal of Southeast University (Natural Science Edition),2020,50(2):274-279.[doi:10.3969/j.issn.1001-0505.2020.02.010]
点击复制

水平往复荷载下FRPC桩与砂土的相互作用宏微观机理()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第2期
页码:
274-279
栏目:
土木工程
出版日期:
2020-03-20

文章信息/Info

Title:
Macro-micro interaction mechanism between FRPC piles and sand soils under horizontal reciprocating loads
作者:
曹小林龚维明戴国亮
东南大学混凝土及预应力混凝土结构教育部重点实验室, 南京 211189; 东南大学土木工程学院, 南京 211189
Author(s):
Cao Xiaolin Gong Weiming Dai Guoliang
Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, Southeast University, Nanjing 211189, China
School of Civil Engineering, Southeast University, Nanjing 211189, China
关键词:
FRPC桩 PIV技术 水平往复荷载 宏微观机理
Keywords:
FRPC(fiber reinforced polymer composite)piles PIV(particle image velocimetry)technology horizontal reciprocating loads macro-micro mechanism
分类号:
TU443
DOI:
10.3969/j.issn.1001-0505.2020.02.010
摘要:
为了研究水平往复荷载作用下FRPC桩与砂土的相互作用宏微观机理,采用粒子图像测速技术,利用自行设计的水平往复桩模型试验系统,对埋入砂土中的FRPC桩施加水平往复荷载.测试加载过程中,利用CCD高速工业相机拍摄桩周砂土的变形情况,分析砂土与FRPC桩的微观相互作用机理.使用DH3816应变仪采集桩身应变,得到弯矩沿桩身的分布情况.试验结果表明:随着荷载的增加,桩身弯矩和桩周砂土的总位移、水平位移、竖向位移均增大,砂土受FRPC桩影响,两端的总位移和水平位移最大,竖向位移沿桩身从上向下增大;最大荷载作用下,桩身出现裂纹,且破坏位置距砂土表面0.245 m,此处的桩身弯矩最大;水平往复荷载下,FRPC桩绕中心区域转动,对砂土的扰动主要发生桩的两端.
Abstract:
To study the macro-micro mechanism interaction between FRPC(fiber reinforced polymer composite)piles and sand soils under horizontal reciprocating loads, a horizontal reciprocating load was applied to FRPC piles embedded in the sand soil with a model test system by self-designed horizontal bi-directional pile using a particle image velocity measurement technology. During the test loading process, the deformation of sand around the pile was photographed by a high-speed industrial CCD(charge coupled device)camera, and the microscopic interaction mechanism between the sand soils and the FRPC piles was analyzed. DH3816 strain gauge was used to collect the pile strain and the distribution of the bending moment along the pile body was obtained. The experimental results show that the bending moment of the pile body, the total displacement, the horizontal displacement, and the vertical displacement of the sand soil around the pile increase with the increase of load. The sand soil is affected by FRPC piles, and the total displacement and the horizontal displacement of both ends are the maximum, while the vertical displacement increases from the top to the bottom along the pile body. Under the maximum load, the pile crack occurs and the damage location is 0.245 m away from the sand surface, where the pile bending moment is the maximum. Under the horizontal reciprocating load, the FRPC pile rotates around the central area, and the disturbance to the sandy soil mainly occurs at the both ends of the pile.

参考文献/References:

[1] Iskander M G,Hassan M.State of the practice review in FRP composite piling[J].Journal of Composites for Construction,1998,2(3):116-120.DOI:10.1061/(asce)1090-0268(1998)2:3(116).
[2] Pando M A,Filz G M,Dove J E,et al.Interface shear tests on FRP composite piles [C]//Proceedings of International Deep Foundations Congress.Orlando,FL,USA,2002:1486-1500.DOI:10.1061/40601(256)106.
[3] Frost J D,Han J.Behavior of interfaces between fiber-reinforced polymers and sands[J].Journal of Geotechnical and Geoenvironmental Engineering,1999,125(8):633-640.DOI:10.1061/(asce)1090-0241(1999)125:8(633).
[4] Mirmiran A,Samaan M,Cabrera S,et al.Design,manufacture and testing of a new hybrid column[J].Construction and Building Materials,1998,12(1):39-49.DOI:10.1016/s0950-0618(97)00073-1.
[5] Fam A,Schnerch D,Rizkalla S.Rectangular filament-wound glass fiber reinforced polymer tubes filled with concrete under flexural and axial loading:Experimental investigation[J].Journal of Composites for Construction,2005,9(1):25-33.DOI:10.1061/(asce)1090-0268(2005)9:1(25).
[6] 周康,戴国亮,杨阳,等.CBF管桩低周反复荷载试验研究[J].东南大学学报(自然科学版),2018,48(3):491-495.DOI:10.3969/j.issn.1001-0505.2018.03.017.
Zhou K,Dai G L,Yang Y,et al.Experimental study on low-cyclic reversed loading of CBF pile[J].Journal of Southeast University(Natural Science Edition),2018,48(3):491-495.DOI:10.3969/j.issn.1001-0505.2018.03.017. (in Chinese)
[7] 周健,邓益兵,叶建忠,等.砂土中静压桩沉桩过程试验研究与颗粒流模拟[J].岩土工程学报,2009,31(4):501-507.
  Zhou J,Deng Y B,Ye J Z,et al.Experimental and numerical analysis of jacked piles during installation in sand[J].Chinese Journal of Geotechnical Engineering,2009,31(4):501-507.(in Chinese)
[8] White D J,Take W A,Bolton M D.Soil deformation measurement using particle image velocimetry(PIV)and photogrammetry[J].Géotechnique,2003,53(7):619-631.DOI:10.1680/geot.2003.53.7.619.
[9] Chen Z C,Omidvar M,Iskander M,et al.Modelling of projectile penetration using transparent soils[J].International Journal of Physical Modelling in Geotechnics,2014,14(3):68-79.DOI:10.1680/ijpmg.14.00003.
[10] 齐昌广,左殿军,刘干斌,等.塑料套管混凝土桩挤土效应的非侵入可视化研究[J].岩石力学与工程学报,2017,36(9):2333-2340.DOI:10.13722/j.cnki.jrme.2016.0935.
Qi C G,Zuo D J,Liu G B,et al.Non-intrusively visualization on squeezing effect of plastic tube cast-in-place concrete piles[J].Chinese Journal of Rock Mechanics and Engineering,2017,36(9):2333-2340.DOI:10.13722/j.cnki.jrme.2016.0935. (in Chinese)
[11] 袁炳祥,吴跃东,陈锐,等.侧向受荷桩周土体内部位移场的模型试验研究[J].浙江大学学报(工学版),2016,50(10):2031-2036.DOI:10.3785/j.issn.1008-973X.2016.10.026.
Yuan B X,Wu Y D,Chen R,et al.Model tests on displacement field of internal soil induced by laterally loading pile[J].Journal of Zhejiang University(Engineering Science),2016,50(10):2031-2036.DOI:10.3785/j.issn.1008-973X.2016.10.026. (in Chinese)
[12] 曹兆虎,孔纲强,周航,等.基于透明土材料的异形桩拔桩过程对比模型试验[J].铁道科学与工程学报,2014,11(3):71-76.DOI:10.3969/j.issn.1672-7029.2014.03.012.
Cao Z H,Kong G Q,Zhou H,et al.Comparative experimentation on pulling process of profiled pile by using transparent soil[J].Journal of Railway Science and Engineering,2014,11(3):71-76.DOI:10.3969/j.issn.1672-7029.2014.03.012. (in Chinese)
[13] 曹兆虎,孔纲强,刘汉龙,等.基于透明土的管桩贯入特性模型试验研究[J].岩土工程学报,2014,36(8):1564-1568.DOI:10.11779/CJGE201408025.
Cao Z H,Kong G Q,Liu H L,et al.Model tests on pipe pile penetration by using transparent soils[J].Chinese Journal of Geotechnical Engineering,2014,36(8):1564-1568.DOI:10.11779/CJGE201408025. (in Chinese)
[14] Yuan B X,Chen R,Li J H,et al.A hydraulic gradient similitude testing system for studying the responses of a laterally loaded pile and soil deformation[J].Environmental Earth Sciences,2016,75(2):1-7.DOI:10.1007/s12665-015-4998-y.
[15] Yuan B X,Liu J Y,Chen W W,et al.Development of a robust Stereo-PIV system for 3-D soil deformation measurement [J].Journal of Testing and Evaluation,2012,40(2):256-264.DOI:10.1520/jte103856.
[16] Yuan B X,Chen R,Teng J,et al.Investigation on 3D ground deformation and response of active and passive piles in loose sand[J].Environmental Earth Sciences,2015,73(11):7641-7649.DOI:10.1007/s12665-014-3935-9.
[17] 张忠苗.桩基工程 [M].北京:中国建筑工业出版社,2007:253-270.

备注/Memo

备注/Memo:
收稿日期: 2019-09-11.
作者简介: 曹小林(1990—),男,博士生; 龚维明(联系人),男,博士,教授,博士生导师,wmgong@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51478109,51808112)、江苏省基础研究计划(自然科学基金)资助项目(BK20180155)、江苏省普通高校学术学位研究生科研创新计划资助项目(KYCX18-0127).
引用本文: 曹小林,龚维明,戴国亮.水平往复荷载下FRPC桩与砂土的相互作用宏微观机理[J].东南大学学报(自然科学版),2020,50(2):274-279. DOI:10.3969/j.issn.1001-0505.2020.02.010.
更新日期/Last Update: 2020-03-20