[1]田荣燕,黄晓明,殷大泉,等.基于水-热-力耦合作用的冻土区CRCP路面应力特性[J].东南大学学报(自然科学版),2020,50(2):286-293.[doi:10.3969/j.issn.1001-0505.2020.02.012]
 Tian Rongyan,Huang Xiaoming,Yin Daquan,et al.Stress characteristics of CRCP pavement in permafrost region based on coupled interaction of moisture-heat-stress fields[J].Journal of Southeast University (Natural Science Edition),2020,50(2):286-293.[doi:10.3969/j.issn.1001-0505.2020.02.012]
点击复制

基于水-热-力耦合作用的冻土区CRCP路面应力特性()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第2期
页码:
286-293
栏目:
材料科学与工程
出版日期:
2020-03-20

文章信息/Info

Title:
Stress characteristics of CRCP pavement in permafrost region based on coupled interaction of moisture-heat-stress fields
作者:
田荣燕12黄晓明1殷大泉1郑彬双1
1 东南大学交通学院, 南京 211189; 2 西藏大学工学院, 拉萨 850000
Author(s):
Tian Rongyan12 Huang Xiaoming1 Yin Daquan1 Zheng Binshuang1
1School of Transportation, Southeast University, Nanjing 211189, China
2College of Engineering, Tibet University, Lhasa 850000, China
关键词:
多年冻土区 多物理场耦合 CRCP路面 融沉效应 路面应力特性
Keywords:
permafrost region multi-physics coupling continuous reinforced concrete(CRCP)pavement thaw settlement effect pavement stress characteristics
分类号:
TU528.1
DOI:
10.3969/j.issn.1001-0505.2020.02.012
摘要:
为了研究多年冻土区地基融沉效应对路面结构应力状态的影响,基于水-热-力耦合作用理论,利用COMSOL有限元软件建立了冻土区连续配筋混凝土路面(CRCP)有限元模型,研究了基层与底基层材料参数、面板厚度与模量、配筋率对CRCP路面结构组合应力的影响,提出了适用于多年冻土区CRCP路面的合理结构形式.结果表明,地基融沉效应对于CRCP路面结构应力影响显著.融沉效应和车辆荷载耦合作用下,板内最大主应力随时间推移逐渐变大.板内最大主应力随面板、基层和底基层的厚度增加而减小,随各层模量的增加而增大,但配筋率的变化对其无影响.考虑融沉效应时,CRCP路面板+水泥稳定碎石+石灰土的路面结构较适宜于多年冻土区,可为多年冻土地区CRCP路面结构设计提供参考.
Abstract:
To study the effects of the foundation thaw settlement on the stress state of the pavement structure in the permafrost region, a finite element model of continuous reinforced concrete pavement(CRCP)in the permafrost region was established by the finite element software COMSOL based on the coupled interaction theory of moisture-heat-stress fields. The effects of the material parameters of the base and the subbase, the concrete slab thickness and modulus as well as the reinforcement ratio on the combination stress of CRCP pavement were investigated. The reasonable structural forms of CRCP pavement in the permafrost region were proposed. The results show that the thaw settlement effect of the foundation on the stress characteristics of CRCP pavement structure is significant. With the coupled interaction of thawing settlement and vehicle loads, the maximum principal stress of the pavement slab gradually increases with time. The maximum principal stress of the pavement slab decreases with the increases of the thickness of the slab, the base and the subbase, and increases with the increase of the modulus of each structure layer, while the reinforcement ratio has little effect on the stress. Considering the thaw settlement effects, the pavement structure of CRCP slab+cement stabilized macadam+lime soil is suitable for the permafrost region, providing a reference for the design of the CRCP pavement structure in the permafrost region.

参考文献/References:

[1] de Winne P,de Backer H,Depuydt S.Active crack control in continuously reinforced concrete pavements(CRCP)[M]//High Tech Concrete:Where Technology and Engineering Meet.Cham, Switzerland:Springer International Publishing,2017:1389-1397.DOI:10.1007/978-3-319-59471-2_160.
[2] Huang C F,Li Q,Wu S C,et al.Subgrade stability evaluation in permafrost regions based on unascertained measurement model[J].Geotechnical and Geological Engineering,2019,37(2):707-719.DOI:10.1007/s10706-018-0642-4.
[3] 杨扬,刘海苹,丁琳,等.多年冻土区典型公路病害类型及形成机理研究[J].交通科技与经济,2017,19(1):46-48,53.DOI:10.19348/j.cnki.issn1008-5696.2017.01.011.
Yang Y,Liu H P,Ding L,et al.On the types and formation mechanism of highway diseases in permafrost regions in Heilongjiang Province[J].Technology & Economy in Areas of Communications,2017,19(1):46-48,53.DOI:10.19348/j.cnki.issn1008-5696.2017.01.011. (in Chinese)
[4] 王锐,程培峰,韩春鹏.高纬度多年冻土区路基工后沉降变形[J].长安大学学报(自然科学版),2017,37(1):43-49,75.DOI:10.19721/j.cnki.1671-8879.2017.01.006.
Wang R,Cheng P F,Han C P.Roadbed settlement deformation after construction in permafrost regions of high altitude[J].Journal of Chang’an University(Natural Science Edition),2017,37(1):43-49,75.DOI:10.19721/j.cnki.1671-8879.2017.01.006. (in Chinese)
[5] Ming F,Yu Q H,Li D Q.Investigation of embankment deformation mechanisms in permafrost regions[J].Transportation Geotechnics,2018,16:21-28.DOI:10.1016/j.trgeo.2018.06.003.
[6] Yamabe T,Neaupane K.Determination of some thermo-mechanical properties of Sirahama sandstone under subzero temperature condition[J].International Journal of Rock Mechanics and Mining Sciences,2001,38(7):1029-1034.DOI:10.1016/s1365-1609(01)00067-3.
[7] Bronfenbrener L.The modelling of the freezing process in fine-grained porous media:Application to the frost heave estimation[J].Cold Regions Science and Technology,2009,56(2/3):120-134.DOI:10.1016/j.coldregions.2008.11.004.
[8] Ciro G,Alfaro M.Adaptation strategies for road embankments on permafrost affected by climate warming[C]//2006 IEEE EIC Climate Change Conference.Ottawa,ON,Canada,2006:1-10.DOI:10.1109/eicccc.2006.277271.
[9] Azmatch T F,Sego D C,Arenson L U,et al.Using soil freezing characteristic curve to estimate the hydraulic conductivity function of partially frozen soils[J].Cold Regions Science and Technology,2012,83/84:103-109.DOI:10.1016/j.coldregions.2012.07.002.
[10] 毛卫南,刘建坤.自适应时间步长法在土体冻结水热耦合模型中的应用[J].防灾减灾工程学报,2014,34(4):510-516.DOI:10.13409/j.cnki.jdpme.2014.04.037.
Mao W N,Liu J K.Application of adaptive time step method to water-heat coupling model of soil freezing[J].Journal of Disaster Prevention and Mitigation Engineering,2014,34(4):510-516.DOI:10.13409/j.cnki.jdpme.2014.04.037. (in Chinese)
[11] Li S Y,Zhang M Y,Tian Y B,et al.Experimental and numerical investigations on frost damage mechanism of a canal in cold regions[J].Cold Regions Science and Technology,2015,116:1-11.DOI:10.1016/j.coldregions.2015.03.013.
[12] 曹东伟,胡长顺.CRCP混凝土温度松弛应力分析[J].中国公路学报,2001,14(1):1-4.DOI:10.3321/j.issn:1001-7372.2001.01.001.
Cao D W,Hu C S.Analysis of relaxation for CRCP thermal stress[J].China Journal of Highway and Transport,2001,14(1):1-4.DOI:10.3321/j.issn:1001-7372.2001.01.001. (in Chinese)
[13] Ouzaa K,Benmansour M B.Cracks in continuously reinforced concrete pavement[J].Arabian Journal for Science and Engineering,2014,39(12):8593-8608.DOI:10.1007/s13369-014-1442-7.
[14] 白桃,黄晓明,李昶,等.连续配筋水泥混凝土路面的临界荷位[J].湖南大学学报(自然科学版),2013,40(6):14-19.DOI:10.3969/j.issn.1674-2974.2013.06.003.
Bai T,Huang X M,Li C,et al.Critical load position of continuously reinforced concrete pavement[J].Journal of Hunan University(Natural Sciences),2013,40(6):14-19.DOI:10.3969/j.issn.1674-2974.2013.06.003. (in Chinese)
[15] Chen X B,Zhao R L,Tong J H,et al.Critical load position for cavities beneath CRCP slab under vehicle loading[J].Journal of Southeast University(English Edition),2016,32(1):78-84.
[16] Sharifi N P,Chen S Y,You Z P,et al.A review on the best practices in concrete pavement design and materials in wet-freeze climates similar to Michigan[J].Journal of Traffic and Transportation Engineering(English Edition),2019,6(3):245-255.DOI:10.1016/j.jtte.2018.12.003.
[17] 王文丽,王兰民,王谦.周期温度边界条件下一维融化固结特性研究[J].冰川冻土,2014,36(4):895-901.
  Wang W L,Wang L M,Wang Q.One-dimensional thawing consolidation behavior with periodical thermal boundary[J].Journal of Glaciology and Geocryology,2014,36(4):895-901.(in Chinese)
[18] 朱志武,宁建国,马巍.基于损伤的冻土本构模型及水、热、力三场耦合数值模拟研究[J].中国科学:物理学 力学 天文学,2010,40(6):758-772.
  Zhu Z W,Ning J G,Ma W.Constitutive model of frozen soil based on damage and numerical simulation of three-field coupling of water,thermal and force [J].Scientia Sinica(Physica,Mechanica & Astronomica),2010,40(6):758-772.(in Chinese)

备注/Memo

备注/Memo:
收稿日期: 2019-09-19.
作者简介: 田荣燕(1980—),女,博士生;黄晓明(联系人),男,博士,教授,博士生导师,huangxm@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51778139)、西藏自治区科技厅重点研发及转化计划资助项目(XZ201901-GB-14)、江苏省研究生科研与实践创新计划资助项目(KYCX18_0146).
引用本文: 田荣燕,黄晓明,殷大泉,等.基于水-热-力耦合作用的冻土区CRCP路面应力特性[J].东南大学学报(自然科学版),2020,50(2):286-293. DOI:10.3969/j.issn.1001-0505.2020.02.012.
更新日期/Last Update: 2020-03-20