[1]张龙云,杨尚阳,张强勇,等.深部花岗岩50 ℃卸荷蠕变试验研究[J].东南大学学报(自然科学版),2020,50(2):294-302.[doi:10.3969/j.issn.1001-0505.2020.02.013]
 Zhang Longyun,Yang Shangyang,Zhang Qiangyong,et al.Experimental study on unloading creep of deep granite at 50 ℃[J].Journal of Southeast University (Natural Science Edition),2020,50(2):294-302.[doi:10.3969/j.issn.1001-0505.2020.02.013]
点击复制

深部花岗岩50 ℃卸荷蠕变试验研究()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第2期
页码:
294-302
栏目:
其他
出版日期:
2020-03-20

文章信息/Info

Title:
Experimental study on unloading creep of deep granite at 50 ℃
作者:
张龙云1杨尚阳12张强勇1丁炎志1
1山东大学土建与水利学院, 济南 250061; 2山东交通学院理学院, 济南 250023
Author(s):
Zhang Longyun1 Yang Shangyang12 Zhang Qiangyong1 Ding Yanzhi1
1School of Civil Engineering, Shandong University, Jinan 250061, China
2Department of Physics and Mathematics, Shandong Jiaotong University, Jinan 250023, China
关键词:
高温洞室 深部花岗岩 高温卸荷 蠕变特性 破坏模式
Keywords:
high-temperature tunnel deep granite temperature-unloading creep characteristics failure mode
分类号:
TD315
DOI:
10.3969/j.issn.1001-0505.2020.02.013
摘要:
为研究深部花岗岩在温度作用下的卸荷蠕变特性,采用岩石全自动三轴流变仪开展了花岗岩在温度50 ℃、围压10、20、30 MPa条件下的卸荷蠕变试验,分析了花岗岩高温卸荷蠕变特征、宏观破坏模式和微细观损伤破坏机理.试验结果表明:在温度效应条件下,花岗岩高压卸荷蠕变会产生较大变形;50 ℃卸荷蠕变条件下,花岗岩的蠕变性能随着围压的卸载而呈指数变化,初始卸荷围压越高,花岗岩越早出现蠕变变形;花岗岩高温卸荷蠕变破坏模式主要为共轭剪切破坏,蠕变作用促使岩石内部损伤裂隙扩展并形成裂隙面而失效破坏;岩石高温卸荷蠕变破坏强度约为常温三轴强度的1/3,其黏聚力和内摩擦角也比常规指标减少30%以上.
Abstract:
To study the unloading creep characteristics of deep granite at high temperature, the unloading creep tests of granite were carried out under the confining pressure of 10, 20, 30 MPa at 50 ℃ by using the rock automatic triaxial rheometer. The unloading creep characteristics, the macroscopic failure modes and the microscopic failure mechanism of granite at high temperature were studied. The experimental results show that the granite produces large creep deformation under high pressure unloading by the effect of the temperature. The creep performance of granite changes exponentially with the unloading at the temperature of 50 ℃. The higher the initial unloading confining pressure is, the earlier the creep deformation of granite appears. The main unloading creep failure mode of granite is shear failure at 50 ℃. The creep effect promotes the propagation of internal damage cracks and fracture surfaces are formed, thus leading to failure. The failure strength of unloading creep at high temperature is about 1/3 of that of the triaxial strength. Compared with the traditional indicators, the cohesion and the internal friction angle reduce more than 30%.

参考文献/References:

[1] 张强勇,向文,江力宇,等.片麻状花岗岩热黏弹塑性损伤蠕变模型及应用研究[J].土木工程学报,2017,50(8):88-97.DOI:10.15951/j.tmgcxb.2017.08.010.
Zhang Q Y,Xiang W,Jiang L Y,et al.A thermal-visco-elastoplastic damage creep model for gneissic granite and its practical application[J].China Civil Engineering Journal,2017,50(8):88-97.DOI:10.15951/j.tmgcxb.2017.08.010. (in Chinese)
[2] 袁培国.超高地温条件下引水隧洞施工关键技术探讨[J].水利水电技术,2014,45(4):101-106.DOI:10.3969/j.issn.1000-0860.2014.04.027.
Yuan P G.Discussion on key technologies for construction of water diversion tunnel under super-high ground temperature[J].Water Resources and Hydropower Engineering,2014,45(4):101-106.DOI:10.3969/j.issn.1000-0860.2014.04.027. (in Chinese)
[3] 侯代平,刘乃飞,余春海,等.新疆布仑口高温引水隧洞几个设计与施工问题探讨[J].岩石力学与工程学报,2013(z2):3396-3403.
  Hou D P,Liu N F,Yu C H,et al.Discussion on design and construction measures for a rock tunnel in high-temperature conditions[J].Chinese Journal of Rock Mechanics and Engineering,2013(z2):3396-3403.(in Chinese)
[4] Okubo S,Nishimatsu Y,Fukui K.Complete creep curves under uniaxial compression[J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1991,28(1):77-82.DOI:10.1016/0148-9062(91)93235-x.
[5] Boukharov G N,Chanda M W,Boukharov N G.The three processes of brittle crystalline rock creep[J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1995,32(4):325-335.DOI:10.1016/0148-9062(94)00048-8.
[6] Fujii Y,Kiyama T,Ishijima Y,et al.Circumferential strain behavior during creep tests of brittle rocks[J].International Journal of Rock Mechanics and Mining Sciences,1999,36(3):323-337.DOI:10.1016/s0148-9062(99)00024-8.
[7] Maranini E,Yamaguchi T.A non-associated viscoplastic model for the behaviour of granite in triaxial compression[J].Mechanics of Materials,2001,33(5):283-293.DOI:10.1016/s0167-6636(01)00052-7.
[8] 张玉,徐卫亚,邵建富,等.渗流-应力耦合作用下碎屑岩流变特性和渗透演化机制试验研究[J].岩石力学与工程学报,2014,33(8):1679-1690.DOI:10.13722/j.cnki.jrme.2014.08.019.
Zhang Y,Xu W Y,Shao J F,et al.Experimental investigation on rheological properties and permeability of clastic rock under hydro-mechanical coupling[J].Chinese Journal of Rock Mechanics and Engineering,2014,33(8):1679-1690.DOI:10.13722/j.cnki.jrme.2014.08.019. (in Chinese)
[9] 梁德贤.高压渗流作用下裂隙岩体损伤演化机制研究[D].徐州:中国矿业大学,2016.
  Liang D X.Study on the damage evolution mechanism of fractured rock mass under high seapage pressure[D].Xuzhou,China:China University of Mining and Technology,2016.(in Chinese)
[10] 吴创周,石振明,付昱凯,等.绿片岩各向异性蠕变特性试验研究[J].岩石力学与工程学报,2014,33(3):493-499.DOI:10.13722/j.cnki.jrme.2014.03.006.
Wu C Z,Shi Z M,Fu Y K,et al.Experimental investigations on structural anisotropy on creep of greenschist[J].Chinese Journal of Rock Mechanics and Engineering,2014,33(3):493-499.DOI:10.13722/j.cnki.jrme.2014.03.006. (in Chinese)
[11] 肖明砾,卓莉,谢红强,等.三轴压缩蠕变试验下石英云母片岩各向异性蠕变特性研究[J].岩土力学,2015,36(S2):73-80.DOI:10.16285/j.rsm.2015.S2.009.
Xiao M L,Zhuo L,Xie H Q,et al.Anisotropic rheological properties of quartz-mica schist under triaxial compression creep test[J].Rock and Soil Mechanics,2015,36(S2):73-80.DOI:10.16285/j.rsm.2015.S2.009. (in Chinese)
[12] Sorace S.Effects of initial creep conditions and temporary unloading on the long-term response of stones[J].Materials and Structures,1998,31(8):555-562.DOI:10.1007/bf02481538.
[13] Kazimierowicz-Frankowska K.Creep properties of geosynthetics during increasing loading and after partial unloading[C]//8th International Conference on Geosynthetics. Yokohama, Japan,2006:1605-1608.
[14] Liu J F,Wang L,Pei J L,et al.Experimental study on creep deformation and long-term strength of unloading-fractured marble[J].European Journal of Environmental and Civil Engineering,2015,19(S1):s97-s107.DOI:10.1080/19648189.2015.1064623.
[15] 邓华锋,周美玲,李建林,等.砂质泥岩三轴卸荷流变力学特性试验研究[J].岩土力学,2016,37(2):315-322.DOI:10.16285/j.rsm.2016.02.002.
Deng H F,Zhou M L,Li J L,et al.Experimental research on unloading triaxial rheological mechanical properties of sandy mudstone[J].Rock and Soil Mechanics,2016,37(2):315-322.DOI:10.16285/j.rsm.2016.02.002. (in Chinese)
[16] 张龙云,张强勇,李术才,等.硬脆性岩石卸荷流变试验及长期强度研究[J].煤炭学报,2015,40(10):2399-2407.DOI:10.13225/j.cnki.jccs.2015.0389.
Zhang L Y,Zhang Q Y,Li S C,et al.Unloading rheological tests of hard brittle rock and its long-term strength analysis[J].Journal of China Coal Society,2015,40(10):2399-2407.DOI:10.13225/j.cnki.jccs.2015.0389. (in Chinese)
[17] 张龙云.硬脆性岩体卸荷非线性流变模型及工程应用[D].济南:山东大学,2016.
  Zhang L Y.Nonlinear unloading rheological model for hard brittle rock mass and its engineering application[D].Jinan:Shandong University,2016.(in Chinese)
[18] Zhao Y L,Zhang L Y,Wang W J,et al.Creep behavior of intact and cracked limestone under multi-level loading and unloading cycles[J].Rock Mechanics and Rock Engineering,2017,50(6):1409-1424.DOI:10.1007/s00603-017-1187-1.
[19] Wang R H,Jiang Y Z,Yang C,et al.A nonlinear creep damage model of layered rock under unloading condition[J].Mathematical Problems in Engineering,2018,2018:1-8.DOI:10.1155/2018/8294390.
[20] Ye G L,Nishimura T,Zhang F.Experimental study on shear and creep behaviour of green tuff at high temperatures[J].International Journal of Rock Mechanics and Mining Sciences,2015,79:19-28.DOI:10.1016/j.ijrmms.2015.08.005.
[21] 陈亮,刘建锋,王春萍,等.不同温度及应力状态下北山花岗岩蠕变特征研究[J].岩石力学与工程学报,2015,34(6):1228-1235.DOI:10.13722/j.cnki.jrme.2014.1221.
Chen L,Liu J F,Wang C P,et al.Creeping behavior of Beishan granite under different temperatures and stress conditions[J].Chinese Journal of Rock Mechanics and Engineering,2015,34(6):1228-1235.DOI:10.13722/j.cnki.jrme.2014.1221. (in Chinese)
[22] 张强勇,张龙云,向文,等.考虑温度效应的片麻状花岗岩三轴蠕变试验研究[J].岩土力学,2017,38(9):2507-2514.DOI:10.16285/j.rsm.2017.09.006.
Zhang Q Y,Zhang L Y,Xiang W,et al.Triaxial creep test of gneissic granite considering thermal effect[J].Rock and Soil Mechanics,2017,38(9):2507-2514.DOI:10.16285/j.rsm.2017.09.006. (in Chinese)

备注/Memo

备注/Memo:
收稿日期: 2019-09-17.
作者简介: 张龙云(1981—),女,博士,高级工程师,zhanglongyun@sdu.edu.cn.
基金项目: 国家自然科学基金资助项目(41772282,51809156)、中国博士后科学基金资助项目(2016M600537)、泰山学者工程专项经费资助项目.
引用本文: 张龙云,杨尚阳,张强勇,等:深部花岗岩50 ℃卸荷蠕变试验研究[J].东南大学学报(自然科学版),2020,50(2):294-302. DOI:10.3969/j.issn.1001-0505.2020.02.013.
更新日期/Last Update: 2020-03-20