[1]余鑫,于诚,杨斌,等.低掺量下无机盐早强剂的早强效果[J].东南大学学报(自然科学版),2020,50(2):303-310.[doi:10.3969/j.issn.1001-0505.2020.02.014]
 Yu Xin,Yu Cheng,Yang Bin,et al.Effects of inorganic salt hardening accelerators on early strength and hydration of cement at low dosages[J].Journal of Southeast University (Natural Science Edition),2020,50(2):303-310.[doi:10.3969/j.issn.1001-0505.2020.02.014]
点击复制

低掺量下无机盐早强剂的早强效果()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第2期
页码:
303-310
栏目:
化学化工
出版日期:
2020-03-20

文章信息/Info

Title:
Effects of inorganic salt hardening accelerators on early strength and hydration of cement at low dosages
作者:
余鑫1于诚1杨斌2姜骞1洪锦祥1
1江苏苏博特新材料股份有限公司高性能土木工程材料国家重点实验室, 南京 211103; 2中国国家铁路集团有限公司, 北京 100844
Author(s):
Yu Xin1 Yu Cheng1 Yang Bin2 Jiang Qian1 Hong Jinxiang1
1 State Key Laboratory of High Performance Civil Engineering Materials, Jiangsu Sobute New Materials Co., Ltd., Nanjing 211103, China
2 China State Railway Group Co., Ltd., Beijing 100844, China
关键词:
早强剂 无机盐 早强 水泥水化
Keywords:
hardening accelerators inorganic salt early strength cement hydration
分类号:
TQ172.1
DOI:
10.3969/j.issn.1001-0505.2020.02.014
摘要:
采用抗压强度测试及微量热、原位XRD法研究了硫氰酸钠、亚硝酸钙、硫代硫酸钠、硝酸钙4种无机盐早强剂在低掺量下的早强效果及对水泥水化的影响.结果表明:4种无机盐中硫氰酸钠在0.05%~0.5%掺量范围内促进水泥早期水化的作用最强,主要加速了硅酸三钙的水化进程,早强效果也最佳.亚硝酸钙对水泥水化的影响随掺量发生变化,当掺量低于0.3%时,未对水泥水化产生促进作用,早期强度反而有所下降,提高掺量后开始促进早期水化,具有一定的早强效果.硫代硫酸钠及硝酸钙在掺量低于0.5%情况下对水泥水化的促进作用较弱,早强效果较差.
Abstract:
The effects of several inorganic salts on early strength and cement hydration at low dosages(≤0.5%)were investigated by compressive strength test and microcalorimetry, in-situ X-Ray diffraction method. The results show that the sodium thiocyanate is the most effective hardening accelerator within the dosage range of 0.05% to 0.5%. Compared with other inorganic salts, the sodium thiocyanate leads to a higher increase in a compressive strength at early ages. The early hydration is promoted mainly by accelerating the reaction of clinker mineral C3S. The effect of calcium nitrite on early strength and hydration varies with dosages. There is no increase but a decrease in the compressive strength at the early ages when the dosage is below 0.3%. With the increase of dosage, the early hydration is promoted and the early strength is enhanced. When the dosage of sodium thiosulfate and calcium nitrate is less than 0.5%, it has no significant effect on the early strength and hydration.

参考文献/References:

[1] 郭春芳, 张明. 早强型聚羧酸系高性能减水剂合成研究[J]. 新型建筑材料, 2012, 39(4): 45-47. DOI:10.3969/j.issn.1001-702X.2012.04.014.
Guo C F, Zhang M. Research on synthesis of a high early strength polycarboxylate superplasticizer[J]. New Building Materials, 2012, 39(4): 45-47. DOI:10.3969/j.issn.1001-702X.2012.04.014. (in Chinese)
[2] 孙宁, 曹禹, 徐朝华, 等. 早强型聚羧酸系减水剂的制备及性能研究[J]. 混凝土与水泥制品, 2016(8): 14-19. DOI:10.19761/j.1000-4637.2016.08.004.
Sun N, Cao Y, Xu Z H, et al. Research on preparation and performance of early strength polycarboxylate superplasticizer[J]. China Concrete and Cement Products, 2016(8): 14-19. DOI:10.19761/j.1000-4637.2016.08.004. (in Chinese)
[3] 汪梁. 早强型聚羧酸减水剂的研究[J]. 新型建筑材料, 2016, 43(1): 30-32. DOI:10.3969/j.issn.1001-702X.2016.01.009.
Wang L. Study on high early strength polycarboxylate water reducing agent[J]. New Building Materials, 2016, 43(1): 30-32. DOI:10.3969/j.issn.1001-702X.2016.01.009. (in Chinese)
[4] 林艳梅. 早强型聚羧酸高性能减水剂的合成研究[J]. 新型建筑材料, 2014, 41(5): 11-14. DOI:10.3969/j.issn.1001-702X.2014.05.003.
Lin Y M. Synthesize and performance on early-type of high-performance polycarboxylate superlasticizer[J]. New Building Materials, 2014, 41(5): 11-14. DOI:10.3969/j.issn.1001-702X.2014.05.003. (in Chinese)
[5] 陈国新, 祝烨然, 黄国泓, 等. 早强型聚羧酸系减水剂的合成与性能研究[J]. 新型建筑材料, 2014, 41(6): 7-9. DOI:10.3969/j.issn.1001-702X.2014.06.002.
Chen G X, Zhu Y R, Huang G H, et al. Study on synthesis and performance of early strength polycarboxylate superplasticizer[J]. New Building Materials, 2014, 41(6): 7-9. DOI:10.3969/j.issn.1001-702X.2014.06.002. (in Chinese)
[6] 唐修生, 黄国泓, 祝烨然, 等. 早强型聚羧酸系减水剂的制备及其性能试验研究[J]. 新型建筑材料, 2013, 40(5): 11-13. DOI:10.3969/j.issn.1001-702X.2013.05.004.
Tang X S, Huang G H, Zhu Y R, et al. Research on synthesis and performance of early-strength polycarboxylate superplasticizer[J]. New Building Materials, 2013, 40(5): 11-13. DOI:10.3969/j.issn.1001-702X.2013.05.004. (in Chinese)
[7] 赵明明, 辛运来, 王亮. 无机盐类早强剂与聚羧酸高效减水剂复配研究[J]. 混凝土, 2011(4): 91-94. DOI:10.3969/j.issn.1002-3550.2011.04.026.
Zhao M M, Xin Y L, Wang L. Study on the inorganic salt soap strength agent acting with polycarboxylate superplasticizer[J]. Concrete, 2011(4): 91-94. DOI:10.3969/j.issn.1002-3550.2011.04.026. (in Chinese)
[8] 李萍, 周转运, 蔡其全, 等. 硫酸钠与聚羧酸减水剂复配对混凝土性能的影响研究[J]. 新型建筑材料, 2014, 41(9): 38-39, 53. DOI:10.3969/j.issn.1001-702X.2014.09.010.
Li P, Zhou Z Y, Cai Q Q, et al. Effect of complex formulation of sodium sulfate and poly carboxylic acid water reducing agent on performances of concrete[J]. New Building Materials, 2014, 41(9): 38-39, 53. DOI:10.3969/j.issn.1001-702X.2014.09.010. (in Chinese)
[9] 程平阶,王宁宁,王凯,等. 硫氰酸钠与聚羧酸减水剂复配对水泥水化的影响研究[J]. 硅酸盐通报, 2014, 33(10): 2672-2678. DOI:10.16552/j.cnki.issn1001-1625.2014.10.041.
Cheng P J, Wang N N, Wang K, et al. Influence study of polycarboxylate superplasticizer complexed with sodium thiocyanate on hydration of cement[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(10): 2672-2678. DOI:10.16552/j.cnki.issn1001-1625.2014.10.041. (in Chinese)
[10] 张栓红, 张磊, 张学强, 等. 早强保坍型聚羧酸系减水剂的合成及其性能研究[J]. 硅酸盐通报, 2015, 43(5): 1454-1458.
  Zhang S H, Zhang L, Zhang X Q, et al. Research on synthesis and performance of a new polycarboxylate superplasticizer with high early strength and slump retention capability[J]. Bulletin of the Chinese Ceramic Society, 2015, 43(5): 1454-1458.(in Chinese)
[11] 杨文萃, 葛勇, 袁杰, 等. 无机盐对水泥石水化程度和孔结构的影响[J]. 硅酸盐学报, 2009, 37(4): 622-626. DOI:10.3321/j.issn:0454-5648.2009.04.025.
Yang W C, Ge Y, Yuan J, et al. Effect of inorganic salts on degree of hydration and pore structure of cement pastes[J]. Journal of the Chinese Ceramic Society, 2009, 37(4): 622-626. DOI:10.3321/j.issn:0454-5648.2009.04.025. (in Chinese)
[12] Ann K Y, Jung H S, Kim H S, et al. Effect of calcium nitrite-based corrosion inhibitor in preventing corrosion of embedded steel in concrete[J]. Cement and Concrete Research, 2006, 36(3): 530-535. DOI:10.1016/j.cemconres.2005.09.003.
[13] Oey T, Stoian J, Li J L, et al. Comparison of Ca(NO3)2 and CaCl2 admixtures on reaction, setting, and strength evolutions in plain and blended cementing formulations[J]. Journal of Materials in Civil Engineering, 2015, 27(10): 04014267. DOI:10.1061/(asce)mt.1943-5533.0001240.
[14] Hoang K, Justnes H, Geiker M. Early age strength increase of fly ash blended cement by a ternary hardening accelerating admixture[J]. Cement and Concrete Research, 2016, 81: 59-69. DOI:10.1016/j.cemconres.2015.11.004.
[15] 姜梅芬, 吕宪俊. 混凝土早强剂的研究与应用进展[J]. 硅酸盐通报, 2014, 33(10): 2527-2533. DOI:10.16552/j.cnki.issn1001-1625.2014.10.022.
Jiang M F, Lü X J. Research and application progresses of concrete early strength agent[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(10): 2527-2533. DOI:10.16552/j.cnki.issn1001-1625.2014.10.022. (in Chinese)
[16] 张丰, 白银, 蔡跃波, 等. 混凝土低温早强剂研究现状[J]. 材料导报, 2017, 31(21): 106-113. DOI:10.11896/j.issn.1005-023X.2017.021.015.
Zhang F, Bai Y, Cai Y B, et al. Research status of low temperature early strength agents for concrete[J]. Materials Review, 2017, 31(21): 106-113. DOI:10.11896/j.issn.1005-023X.2017.021.015. (in Chinese)
[17] 张小伟, 肖瑞敏, 张雄. 粉煤灰-矿粉-水泥胶凝体系的高效复合早强剂研制[J]. 建筑材料学报, 2012, 15(2): 249-254. DOI:10.3969/j.issn.1007-9629.2012.02.020.
Zhang X W, Xiao R M, Zhang X. Preparation of high performance composites strength accelerator for cement containing fly ash and ground granulated blast-furnace slag[J]. Journal of Building Materials, 2012, 15(2): 249-254. DOI:10.3969/j.issn.1007-9629.2012.02.020. (in Chinese)
[18] Huang H, Shen X D. Influence of low-dose chemicals on the early strength of Portland cement: Statistical and calorimetric evidence[J]. Advances in Cement Research, 2017, 29(4): 155-165. DOI:10.1680/jadcr.15.00101.
[19] Kumar A, Bishnoi S, Scrivener K L. Modelling early age hydration kinetics of alite[J]. Cement and Concrete Research, 2012, 42(7): 903-918.
[20] Bentz D, Barrett T, de la Varga I, et al. Relating compressive strength to heat release in mortars[J]. Advances in Civil Engineering Materials, 2012, 1(1):1-16.
[21] Hesse C, Goetz-Neunhoeffer F, Neubauer J, et al. Quantitative in situ X-ray diffraction analysis of early hydration of Portland cement at defined temperatures[J]. Powder Diffraction, 2009, 24(2): 112-115. DOI:10.1154/1.3120603.
[22] Jansen D, Goetz-Neunhoeffer F, Stabler C, et al. A remastered external standard method applied to the quantification of early OPC hydration[J]. Cement and Concrete Research, 2011, 41(6): 602-608. DOI:10.1016/j.cemconres.2011.03.004.
[23] Jansen D, Stabler Ch, Goetz-Neunhoeffer F, et al. Does Ordinary Portland Cement contain amorphous phase? A quantitative study using an external standard method[J]. Powder Diffraction, 2011, 26(1): 31-38. DOI: 10.1154/1.3549186.
[24] 余鑫,于诚,冉千平,等. 基于Rietveld外标法的水泥及其水化产物定量分析[J]. 材料导报,2019, 33(14): 2337-2342.
Yu X, Yu C, Ran Q P, et al. Quantitative analysis of cement and its hydration product by Rietveld external standard method[J]. Materials Rievew, 2019, 33(14): 2337-2342. DOI:10.11896/cldb.18050118. (in Chinese)

备注/Memo

备注/Memo:
收稿日期: 2019-09-12.
作者简介: 余鑫(1990—),男,工程师,yuxin@cnjsjk.cn.
基金项目: 国家重点研发计划资助项目(2016YFE0206100)、中国铁路总公司科技研究开发计划资助项目(P2018G004).
引用本文: 余鑫,于诚,杨斌,等.低掺量下无机盐早强剂的早强效果[J].东南大学学报(自然科学版),2020,50(2):303-310. DOI:10.3969/j.issn.1001-0505.2020.02.014.
更新日期/Last Update: 2020-03-20