[1]张丰,白银,蔡跃波.溴化钙对水泥基材料强度及微观结构影响[J].东南大学学报(自然科学版),2020,50(2):311-319.[doi:10.3969/j.issn.1001-0505.2020.02.015]
 Zhang Feng,Bai Yin,Cai Yuebo.Effect of calcium bromide on strength and microstructure of cement-based materials[J].Journal of Southeast University (Natural Science Edition),2020,50(2):311-319.[doi:10.3969/j.issn.1001-0505.2020.02.015]
点击复制

溴化钙对水泥基材料强度及微观结构影响()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第2期
页码:
311-319
栏目:
化学化工
出版日期:
2020-03-20

文章信息/Info

Title:
Effect of calcium bromide on strength and microstructure of cement-based materials
作者:
张丰白银蔡跃波
南京水利科学研究院水文水资源与水利工程科学国家重点实验室, 南京 210029
Author(s):
Zhang Feng Bai Yin Cai Yuebo
State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China
关键词:
低温 溴化钙 净浆 水化热 微观结构
Keywords:
low temperatures calcium bromide cement paste hydration heat microstructure
分类号:
TQ172
DOI:
10.3969/j.issn.1001-0505.2020.02.015
摘要:
以溴化钙(CaBr2)作为早强组分,研究低温5 ℃下CaBr2的早强性能,及其对净浆水化热、产物组成、微观形貌和孔结构的影响.结果表明:CaBr2早强性能优异,且使28 d强度不降低;对温度-5~20 ℃具有良好适应性,温度越低,早强作用越显著.当温度低于5 ℃以下,掺1.0% CaBr2时,净浆1、3、7 和28 d抗压强度比分别达到299%、179%、157%和134%,各龄期强度均超过对比样20 ℃养护下的强度.当温度为20 ℃时,CaBr2的掺入使水泥水化诱导期缩短、加速期提前,水化放热速率、放热量增大.CaBr2促进了低温下水泥熟料的水化,且生成水化溴氧铝酸钙[Ca4Al2O6Br2·10H2O]的新物质,大量水化产物相互堆积,细化了水化初期(7 d前)试件的孔径,最可几孔径减小,总孔隙率降低,试件微观结构更加致密.
Abstract:
Calcium bromide(CaBr2)was designed as an early strength component to study its early-strength properties at low temperature of 5 ℃, and its effects on the hydration heat, product composition, microstructure, and pore structure of cement pastes were discussed. The results show that, CaBr2 has a significant effect on the early strength and does not cause the 28 d strength decrease. CaBr2 had good adaptability to the temperature(-5 to 20 ℃), and the lower the temperature was, the more significant the effect of early strength was. The 1, 3, 7 and 28 d compressive strengths of the cement pastes mixed with 1.0% CaBr2 can reach 299%, 179%, 157%, and 134%, respectively at 5 ℃, and the strengths at each age have already exceeded that of the contrast sample cured at 20 ℃. At 20 ℃, the incorporation of CaBr2 shortens the induction period and advances the accelerated period of cement hydration, and increases the heat release rate and heat release. CaBr2 can promote the initial hydration of the cement clinker at the low temperature, and generate new products of hydrated calcium bromoaluminate(Ca4Al2O6Br2·10H2O). Large amounts of hydration products are accumulated with each other, refining the pores size of cement pastes at the initial stage of hydration(before 7 d)and decreasing the most probable pore size and total porosity, thus the microstructure of specimens became denser.

参考文献/References:

[1] 王传星, 谢剑, 李会杰. 低温环境下混凝土性能的试验研究[J]. 工程力学, 2011, 28(S2): 182-186.
  Wang C X,Xie J, Li H J. Experimental research on the properties of concrete under low-temperature[J]. Engineering Mechanics, 2011, 28(S2): 182-186.(in Chinese)
[2] Husem M, Gozutok S. The effects of low temperature curing on the compressive strength of ordinary and high performance concrete[J]. Construction and Building Materials, 2005, 19(1): 49-53. DOI:10.1016/j.conbuildmat.2004.04.033.
[3] Tan K F, Gjorv O E. Performance of concrete under different curing conditions[J]. Cement and Concrete Research, 1996, 26(3): 355-361. DOI:10.1016/s0008-8846(96)85023-x.
[4] Kim J, Moon Y, Eo S. Compressive strength development of concrete with different curing time and temperature[J]. Cement and Concrete Research, 1998, 28(12): 1761-1773. DOI:10.1016/s0008-8846(98)00164-1.
[5] Escalante-Garcia J I, Sharp J H. Variation in the composition of C-S-H gel in Portland cement pastes cured at various temperatures[J]. Journal of the American Ceramic Society, 2004, 82(11): 3237-3241. DOI:10.1111/j.1151-2916.1999.tb02230.x.
[6] Scrivener K L, Juilland P, Monteiro P J M. Advances in understanding hydration of Portland cement[J]. Cement and Concrete Research, 2015, 78: 38-56. DOI:10.1016/j.cemconres.2015.05.025.
[7] Lothenbach B, Winnefeld F, Alder C, et al. Effect of temperature on the pore solution, microstructure and hydration products of Portland cement pastes[J]. Cement and Concrete Research, 2007, 37(4): 483-491. DOI:10.1016/j.cemconres.2006.11.016.
[8] Nicoleau L, Nonat A. A new view on the kinetics of tricalcium silicate hydration[J]. Cement and Concrete Research, 2016, 86: 1-11. DOI: 10. 1016/j. cemconres. 2016. 04. 009.
[9] 姜梅芬, 吕宪俊. 混凝土早强剂的研究与应用进展[J]. 硅酸盐通报, 2014, 33(10): 2527-2533. DOI:10.16552/j.cnki.issn1001-1625.2014.10.022.
Jiang M F, Lü X J. Research and application progresses of concrete early strength agent[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(10): 2527-2533. DOI:10.16552/j.cnki.issn1001-1625.2014.10.022. (in Chinese)
[10] 张丰, 白银, 蔡跃波, 等. 混凝土低温早强剂研究现状[J]. 材料导报, 2017, 31(21): 106-113.
  Zhang F,Bai Y, Cai Y B, et al. Research status of low temperature early strength agents for concrete[J]. Materials Review, 2017, 31(21): 106-113.(in Chinese)
[11] 冷达, 张雄, 沈中林. 减水剂和早强剂对水泥基灌浆材料性能的影响[J]. 新型建筑材料, 2008, 35(11): 21-25. DOI: 10. 3969/j. issn. 1001-702X. 2008. 11. 006.
Leng D, Zhang X, Shen Z L. Effects of water reducing agent and hardening accelerating admixture on the performance of cement-based grouting material[J]. New Building Materials, 2008, 35(11): 21-25. DOI:10. 3969/j. issn. 1001-702X. 2008. 11. 006. (in Chinese)
[12] Heikal M. Effect of calcium formate as an accelerator on the physicochemical and mechanical properties of pozzolanic cement pastes[J]. Cement and Concrete Research, 2004, 34(6): 1051-1056. DOI:10.1016/j.cemconres.2003.11.015.
[13] Richardson A. Strength development of plain concrete compared to concrete with a non-chloride accelerating admixture[J]. Structural Survey, 2007, 25(5): 418-423. DOI: 10. 1108/02630800710838455.
[14] de Schutter G, Luo L. Effect of corrosion inhibiting admixtures on concrete properties[J]. Construction and Building Materials, 2004, 18(7): 483-489. DOI:10.1016/j.conbuildmat.2004.04.001.
[15] 王文婷. 无机盐类外加剂对混凝土碳化性能的影响及机理探讨[D]. 西安: 西安建筑科技大学, 2013.
  Wang W T. Research on effect and mechanism of inorganic additives on concrete carbonation performance[D]. Xi’an: Xi’an University of Architecture and Technology, 2013.(in Chinese)
[16] 韩建国, 阎培渝. 碳酸锂对硫铝酸盐水泥水化特性和强度发展的影响[J]. 建筑材料学报, 2011, 14(1): 6-9. DOI: 10. 3969/j. issn. 1007-9629. 2011. 01. 002.
Han J G, Yan P Y. Influence of lithium carbonate on hydration characteristics and strength development of sulphoaluminate cement[J]. Journal of Building Materials, 2011, 14(1): 6-9.DOI:10. 3969/j. issn. 1007-9629. 2011. 01. 002. (in Chinese)
[17] Matusinovi T, urlin D. Lithium salts as set accelerators for high alumina cement[J]. Cement and Concrete Research, 1993, 23(4): 885-895. DOI:10.1016/0008-8846(93)90042-8.
[18] 陈子川. 低温混凝土早强剂: 中国,201110049598.X[P]. 2011-03-02.
[19] 黄志松. 碳酸锂对硫铝酸盐水泥性能的影响[J]. 建筑技术, 2015, 46(S1): 81-82. DOI:10.13731/j.issn.1000-4726.2015.s1.023.
Huang Z S. Effect of lithium carbonate on properties of sulphoaluminate cement[J]. Architecture Technology, 2015, 46(S1): 81-82. DOI:10.13731/j.issn.1000-4726.2015.s1.023. (in Chinese)
[20] Gu P, Beaudoin J J. Lithium salt-based additives for early strength-enhancement of ordinary Portland cement-high alumina cement paste[J]. Journal of Materials Science Letters, 1997, 16(9): 696-698. DOI: 10.1023/A:1018504324894.
[21] Hou P K, Wang K J, Qian J S, et al. Effects of colloidal nanoSiO2 on fly ash hydration[J]. Cement and Concrete Composites, 2012, 34(10): 1095-1103. DOI:10.1016/j.cemconcomp.2012.06.013.
[22] Berra M, Carassiti F, Mangialardi T, et al. Effects of nanosilica addition on workability and compressive strength of Portland cement pastes[J]. Construction and Building Materials, 2012, 35: 666-675. DOI:10.1016/j.conbuildmat.2012.04.132.
[23] 叶青, 张泽南, 孔德玉, 等. 掺纳米SiO2和掺硅粉高强混凝土性能的比较[J]. 建筑材料学报, 2003, 6(4): 381-385. DOI: 10. 3969/j. issn. 1007-9629. 2003. 04. 008.
Ye Q, Zhang Z N, Kong D Y, et al. Comparison of properties of high strength concrete with nano-SiO2 and silica fume added[J]. Journal of Building Materials, 2003, 6(4): 381-385. DOI:10. 3969/j. issn. 1007-9629. 2003. 04. 008. (in Chinese)
[24] Zhang M H, Islam J, Peethamparan S. Use of nano-silica to increase early strength and reduce setting time of concretes with high volumes of slag[J]. Cement and Concrete Composites, 2012, 34(5): 650-662. DOI:10.1016/j.cemconcomp.2012.02.005.
[25] 李固华, 高波. 纳米微粉SiO2和CaCO3对混凝土性能影响[J]. 铁道学报, 2006, 28(1): 131-136. DOI: 10. 3321/j. issn: 1001-8360. 2006. 01. 026.
Li G H,Gao B. Effect of level SiO2 and level CaCO3 on concret performance[J]. Journal of the China Railway Society, 2006, 28(1): 131-136. DOI:10. 3321/j. issn: 1001-8360. 2006. 01. 026. (in Chinese)
[26] Haruehansapong S, Pulngern T, Chucheepsakul S. Effect of the particle size of nanosilica on the compressive strength and the optimum replacement content of cement mortar containing nano-SiO2[J]. Construction and Building Materials, 2014, 50: 471-477. DOI:10.1016/j.conbuildmat.2013.10.002.
[27] 徐庆磊. 纳米二氧化硅对水泥基材料性能的影响及作用机理研究[D]. 杭州: 浙江大学, 2013.
  Xu Q L. The effects of nano-SiO2on the performance of cement-based materials and the study of the mechanism[D]. Hangzhou: Zhejiang University, 2013.(in Chinese)
[28] 张丰, 白银, 蔡跃波, 等. 低温养护下溴化锂对水泥早期水化的影响[J]. 水利学报, 2019, 50(4): 506-515. DOI:10.13243/j.cnki.slxb.20181060.
Zhang F,Bai Y, Cai Y B, et al. Effect of lithium bromide on early hydration process of cement at low temperature[J]. Journal of Hydraulic Engineering, 2019, 50(4): 506-515. DOI:10.13243/j.cnki.slxb.20181060. (in Chinese)

相似文献/References:

[1]刘卫东,魏同立.MOSFET低温热载流子效应[J].东南大学学报(自然科学版),1994,24(2):15.[doi:10.3969/j.issn.1001-0505.1994.02.003]
 Liu Weidong,Wei Tongli.Low Temperature Hot Carrier Effects in MOSFET’s[J].Journal of Southeast University (Natural Science Edition),1994,24(2):15.[doi:10.3969/j.issn.1001-0505.1994.02.003]
[2]刘卫东,魏同立,李垚.低温CMOS-器件物理和互连特性[J].东南大学学报(自然科学版),1995,25(4):64.[doi:10.3969/j.issn.1001-0505.1995.04.012]
 Liu Weidong,Wei,Tongli,et al.Low-Temperature CMOS-Device Physics and Interconnection Properties[J].Journal of Southeast University (Natural Science Edition),1995,25(2):64.[doi:10.3969/j.issn.1001-0505.1995.04.012]
[3]方峰,蒋建清,马驰.硫酸羟胺对低温磷化过程的影响[J].东南大学学报(自然科学版),2007,37(3):470.[doi:10.3969/j.issn.1001-0505.2007.03.023]
 Fang Feng,Jiang Jianqing,Ma Chi.Effect of hydroxylamine sulfate accelerator on low-temperature phosphating process[J].Journal of Southeast University (Natural Science Edition),2007,37(2):470.[doi:10.3969/j.issn.1001-0505.2007.03.023]
[4]李垚,魏同立.ECL电路传输延迟时间tpd的全温区分析[J].东南大学学报(自然科学版),1996,26(1):1.[doi:10.3969/j.issn.1001-0505.1996.01.001]
 Li Yao,Wei,Tongli.Analysis of Propagation Delay tpd for ECL Circuits in the Whole Range of 77 ̄300K[J].Journal of Southeast University (Natural Science Edition),1996,26(2):1.[doi:10.3969/j.issn.1001-0505.1996.01.001]
[5]李垚,魏同立,沈克强.低温高速双极晶体管基区的优化设计[J].东南大学学报(自然科学版),1995,25(3):34.[doi:10.3969/j.issn.1001-0505.1995.03.007]
 Li Yao,Wei Tongli,et al.Optimizing the Base Profile for High-SpeedBipolar Transistore at Low Temperature[J].Journal of Southeast University (Natural Science Edition),1995,25(2):34.[doi:10.3969/j.issn.1001-0505.1995.03.007]
[6]曹俊诚,魏同立.77KMOS器件计算机模拟及软件实现[J].东南大学学报(自然科学版),1994,24(5):42.[doi:10.3969/j.issn.1001-0505.1994.05.008]
 Cao Juncheng,Wei Tongli.Simulation and Softwae for MOSFET at 77K[J].Journal of Southeast University (Natural Science Edition),1994,24(2):42.[doi:10.3969/j.issn.1001-0505.1994.05.008]

备注/Memo

备注/Memo:
收稿日期: 2019-09-27.
作者简介: 张丰(1989—),男,博士,工程师,fzhang@nhri.cn.
基金项目: 国家重点研发计划资助项目(2018YFC0406702)、国家自然科学基金资助项目(51739008)、云南省交通运输厅行业科技攻关资助项目(云交科教[2016]56号)、中央级公益性科研院所基本科研业务费专项资助项目(Y419004).
引用本文: 张丰,白银,蔡跃波.溴化钙对水泥基材料强度及微观结构影响[J].东南大学学报(自然科学版),2020,50(2):311-319. DOI:10.3969/j.issn.1001-0505.2020.02.015.
更新日期/Last Update: 2020-03-20