[1]石明珠,邵应娟,钟文琪,等.核动力船舰超临界二氧化碳循环系统建模与性能分析[J].东南大学学报(自然科学版),2020,50(2):351-357.[doi:10.3969/j.issn.1001-0505.2020.02.020]
 Shi Mingzhu,Shao Yingjuan,Zhong Wenqi,et al.Modeling and performance analysis on supercritical CO2 power cycle in nuclear-powered vessels[J].Journal of Southeast University (Natural Science Edition),2020,50(2):351-357.[doi:10.3969/j.issn.1001-0505.2020.02.020]
点击复制

核动力船舰超临界二氧化碳循环系统建模与性能分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第2期
页码:
351-357
栏目:
能源与动力工程
出版日期:
2020-03-20

文章信息/Info

Title:
Modeling and performance analysis on supercritical CO2 power cycle in nuclear-powered vessels
作者:
石明珠邵应娟钟文琪石岩
东南大学能源热转换及其过程测控教育部重点实验室, 南京 210096
Author(s):
Shi Mingzhu Shao Yingjuan Zhong Wenqi Shi Yan
Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
关键词:
超临界二氧化碳 布雷顿循环 核动力船舰 系统建模 热力学分析
Keywords:
supercritical CO2 Brayton cycle nuclear-powered vessels system modeling thermodynamic analysis
分类号:
TK11
DOI:
10.3969/j.issn.1001-0505.2020.02.020
摘要:
为探究以超临界二氧化碳(supercritical carbon dioxide, S-CO2)布雷顿循环耦合核反应堆所构成的新型船舰动力装置的系统性能,选取4种高效紧凑的S-CO2循环(再压缩、内冷、部分冷却及再热)耦合4种典型船用核反应堆(铅冷快堆、高温气冷快堆、钠冷快堆及压水堆),构建了16种核动力船舰S-CO2循环动力系统及其热力学模型,研究分流比、透平入口压力、压缩机入口压力和循环最低温度对循环效率的影响.结果表明:存在最佳分流比及压缩机入口压力使循环效率达到最高;各系统循环效率随透平入口压力的提高,呈先迅速增长后趋于稳定趋势;S-CO2再热循环应用于上述4种典型船用核反应堆二回路系统时效率最高,分别为46.6%、50.8%、 44.5%及32.5%;根据高温气冷快堆S-CO2再热循环系统热力性能最佳,提出了其整体系统布置方案.
Abstract:
To investigate the system performance of a novel marine propulsion system consisting of supercritical carbon dioxide(S-CO2)Brayton cycle coupled marine nuclear reactor, four efficient and compact layouts of S-CO2 cycle(with recompression, inter-cooling, partial-cooling and reheating, respectively)were selected and integrated with four representative marine nuclear reactors, including a lead-cooled fast reactor(LFR), a high temperature gas-cooled reactor(HTGR), a sodium-cooled fast reactor(SFR), and a pressurized water reactor(PWR). 16 groups of systems and their thermodynamics models were established, and the effects of split ratio, turbine inlet pressure, compressor inlet pressure, and cycle minimal temperature on the cycle efficiency were studied. The results show that there is an optimum value of the split ratio and the compressor inlet pressure maximizing the cycle efficiency. With the increase of the turbine inlet pressure, the cycle efficiency of each system increases rapidly and then tends to be stable. The S-CO2 reheating cycle has the highest cycle efficiency when applied to the secondary loop system of each nuclear propulsion system, it is 46.6%, 50.8%, 44.5% and 32.5%, respectively. The performance of the integrated system of reheating cycle with HTGR is the best, thus its optimum arrangement plan is proposed.

参考文献/References:

[1] 贾宝山,俞冀阳,彭敏俊.核能动力装置设计与优化原理[M].哈尔滨:哈尔滨工程大学出版社,2010:1-15.
[2] 于俊崇.船用核动力[M].上海:上海交通大学出版社,2016:2-5.
[3] 赵新宝,鲁金涛,袁勇,等.超临界二氧化碳布雷顿循环在发电机组中的应用和关键热端部件选材分析[J].中国电机工程学报,2016,36(1):154-162. DOI:10.13334/j.0258-8013.pcsee.2016.01.016.
Zhao X B, Lu J T, Yuan Y, et al. Analysis of supercritical carbon dioxide brayton cycle and candidate materials of key hot components for power plants[J]. Proceedings of the CSEE, 2016, 36(1): 154-162. DOI:10.13334/j.0258-8013.pcsee.2016.01.016. (in Chinese)
[4] Dostal V, Driscoll M J, Hejzlar P. A supercritical carbon dioxide cycle for next generation nuclear reactors[D]. Cambridge, MA, USA: Massachusetts Institute of Technology, 2004.
[5] 晋文超,葛宋.国外超临界二氧化碳循环发电技术发展及应用前景[J].舰船科学技术,2018,40(6):6-9. DOI:10.3404/j.issn.1672-7649.2018.06.002.
Jin W C, Ge S. The international development of supercritical carbon dioxide brayton cycle power generation technology and its application[J]. Ship Science and Technology, 2018, 40(6): 6-9. DOI:10.3404/j.issn.1672-7649.2018.06.002. (in Chinese)
[6] Feher E G. The supercritical thermodynamic power cycle[J]. Energy Conversion, 1968, 8(2): 85-90. DOI:10.1016/0013-7480(68)90105-8.
[7] Angelino G. Carbon dioxide condensation cycles for power production[J]. Journal of Engineering for Power, 1968, 90(3): 287-295. DOI:10.1115/1.3609190.
[8] Hoffmann J R, Feher E G. 150 kWe supercritical closed cycle system[J]. Journal of Engineering for Power, 1971, 93(1): 70-80. DOI:10.1115/1.3445409.
[9] Combs O. An investigation of the supercritical CO2 cycle(Feher cycle)for shipboard application[D]. Cambridge, MA, USA: Massachusetts Institute of Technology, 1977.
[10] Petr V, Kolovratnik M. A study on application of a closed cycle CO2 gas turbine in power engineering[R]. Prague, Czechia:Czech Technical University in Prague, Department of Fluid Dynamics and Power Engineering, Division of Power Engineering, 1997.
[11] Kato Y, Nitawaki T, Yoshizawa Y. A carbon dioxide partial condensation direct cycle for advanced gas cooled fast and thermal Reactors[J]. Bulletin-Research Laboratory for Nuclear Reactors, 2001, 25: 91-92.
[12] Dostal V, Hejzlar P, Todreas N E, et al. Plant design and cost assessment of forced circulation lead-bismuth cooled reactor with conventional power conversion cycles [R]. Cambridge, MA, USA: Massachusetts Institute of Technology, 2011.
[13] Moisseytsev A, Sienicki J J. Investigation of alternative layouts for the supercritical carbon dioxide Brayton cycle for a sodium-cooled fast reactor[J]. Nuclear Engineering and Design, 2009, 239(7): 1362-1371. DOI:10.1016/j.nucengdes.2009.03.017.
[14] Floyd J, Alpy N, Moisseytsev A, et al. A numerical investigation of the sCO2 recompression cycle off-design behaviour, coupled to a sodium cooled fast reactor, for seasonal variation in the heat sink temperature[J]. Nuclear Engineering and Design, 2013, 260: 78-92. DOI:10.1016/j.nucengdes.2013.03.024.
[15] Pham H S, Alpy N, Ferrasse J H, et al. Mapping of the thermodynamic performance of the supercritical CO2 cycle and optimisation for a small modular reactor and a sodium-cooled fast reactor[J]. Energy, 2015, 87: 412-424. DOI:10.1016/j.energy.2015.05.022.
[16] Park J H, Park H S, Kwon J G, et al. Optimization and thermodynamic analysis of supercritical CO2 Brayton recompression cycle for various small modular reactors[J]. Energy, 2018, 160: 520-535. DOI:10.1016/j.energy.2018.06.155.
[17] Moisseytsev A, Sienicki J J. Supercritical CO2 brayton cycle control strategy for autonomous liquid metal-cooled reactors[J]. Experimental & Toxicologic Pathology, 2004, 60(4/5): 289-294. DOI:10.1016/j.etp.2007.11.004.
[18] le Moullec Y. Conceptual study of a high efficiency coal-fired power plant with CO2 capture using a supercritical CO2 Brayton cycle[J]. Energy, 2013, 49: 32-46. DOI:10.1016/j.energy.2012.10.022.
[19] Ma T, Li M J, Xu J L, et al. Thermodynamic analysis and performance prediction on dynamic response characteristic of PCHE in 1 000 MW S-CO2 coal fired power plant[J]. Energy, 2019, 175: 123-138. DOI:10.1016/j.energy.2019.03.082.
[20] 王兵兵,乔加飞.预压缩式超临界二氧化碳布雷顿循环的特性研究[J].动力工程学报,2018,38(5):412-417.
  Wang B B, Qiao J F. Performance analysis of a pre-compression S-CO2 brayton cycle[J]. Journal of Chinese Society of Power Engineering, 2018, 38(5): 412-417.(in Chinese)
[21] Ma Y G, Liu M, Yan J J, et al. Thermodynamic study of main compression intercooling effects on supercritical CO2 recompression Brayton cycle[J]. Energy, 2017, 140: 746-756. DOI:10.1016/j.energy.2017.08.027.
[22] 方立军,杨雪,孙立超,等.超临界二氧化碳部分冷却布雷顿循环参数优化[J].发电设备,2018,32(1):7-10, 18. DOI:10.3969/j.issn.1671-086X.2018.01.002.
Fang L J, Yang X, Sun L C, et al. Parameters optimization of a supercritical CO2 partial pre-cooling brayton cycle[J]. Power Equipment, 2018, 32(1): 7-10, 18. DOI:10.3969/j.issn.1671-086X.2018.01.002. (in Chinese)
[23] Sarkar J, Bhattacharyya S. Optimization of recompression S-CO2 power cycle with reheating[J]. Energy Conversion and Management, 2009, 50(8): 1939-1945. DOI:10.1016/j.enconman.2009.04.015.
[24] Geng C C, Shao Y J, Zhong W Q, et al. Thermodynamic analysis of supercritical CO2 power cycle with fluidized bed coal combustion[J]. Journal of Combustion, 2018, 2018: 1-9. DOI:10.1155/2018/6963292.
[25] 张一帆,王生鹏,刘文娟,等.超临界二氧化碳再压缩再热火力发电系统关键参数的研究[J].动力工程学报,2016,36(10):827-833.DOI:10.3969/j.issn.1674-7607.2016.10.010.
Zhang Y F, Wang S P, Liu W J, et al. Study on key parameters of a supercritical fossil-fired power system with CO2 recompression and rehear cycles[J]. Journal of Chinese Society of Power Engineering, 2016, 36(10): 827-833. DOI:10.3969/j.issn.1674-7607.2016.10.010.

备注/Memo

备注/Memo:
收稿日期: 2019-09-02.
作者简介: 石明珠(1995—),女,硕士生;邵应娟(联系人),女,博士,副教授,博士生导师,yjshao@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51876037)、装备预研教育部联合基金资助项目(6141A02033524).
引用本文: 石明珠,邵应娟,钟文琪,等.核动力船舰超临界二氧化碳循环系统建模与性能分析[J].东南大学学报(自然科学版),2020,50(2):351-357. DOI:10.3969/j.issn.1001-0505.2020.02.020.
更新日期/Last Update: 2020-03-20