[1]魏莉,钟文琪,邵应娟.煤流化床加压富氧燃烧过程的动态特性[J].东南大学学报(自然科学版),2020,50(2):358-367.[doi:10.3969/j.issn.1001-0505.2020.02.021]
 Wei Li,Zhong Wenqi,Shao Yingjuan.Dynamic characteristics of pressurized oxy-fuel combustion in fluidized bed[J].Journal of Southeast University (Natural Science Edition),2020,50(2):358-367.[doi:10.3969/j.issn.1001-0505.2020.02.021]
点击复制

煤流化床加压富氧燃烧过程的动态特性()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第2期
页码:
358-367
栏目:
化学化工
出版日期:
2020-03-20

文章信息/Info

Title:
Dynamic characteristics of pressurized oxy-fuel combustion in fluidized bed
作者:
魏莉钟文琪邵应娟
东南大学能源热转换及其过程测控教育部重点实验室, 南京 210096
Author(s):
Wei Li Zhong Wenqi Shao Yingjuan
Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
关键词:
富氧燃烧 加压流化床 动态特性 烟气组分计算
Keywords:
oxy-fuel combustion pressurized fluidized bed dynamic characteristics calculation of flue gas components
分类号:
TQ534
DOI:
10.3969/j.issn.1001-0505.2020.02.021
摘要:
为全面深入地了解流化床加压富氧燃烧过程动态特性,建立了流化床加压富氧燃烧过程动态模型,充分考虑了燃烧气氛和燃烧压力改变对炉内燃烧以及烟气组成的影响.基于该模型分别研究了送风氧浓度、燃烧压力以及燃煤量改变时,炉内床温和烟气中各组分体积分数的动态响应,并对其在不同氧浓度和燃烧压力下的响应特性进行研究.研究结果表明,氧浓度、燃烧压力以及燃料量阶跃增加10%会引起炉内床温升高,其中密相区响应速度更快;同时,烟气中各组分体积分数在不同参数扰动下响应各异,主要受到此时炉内燃烧状况以及对应的风量、燃料量改变的影响.此外,床温和烟气中CO2体积分数在压力以及氧浓度突然增加时的动态响应分别在高氧浓度、高燃烧压力下更明显,响应速度更快.整个变化过程中,烟气中CO2体积分数为90%左右,烟气中O2体积分数在8%以下.研究所得相关动态响应规律可对后续控制系统设计及优化提供参考与依据.
Abstract:
To understand the dynamic characteristics of pressurized oxy-fuel combustion process, a dynamic model was established considering both the effects of the combustion atmosphere and pressure on combustion and flue gas composition. Based on the model, the dynamic response of bed temperature and the volume fraction of each component in the flue gas with the step increase of inlet O2 concentration, combustion pressure, and coal feeding rate were studied as well as the response characteristics under different inlet O2 concentrations and combustion pressures. The results show that, a 10% step increase of inlet O2 concentration, the combustion pressure and the coal feeding rate can increase the bed temperature inside the furnace, of which the response speed in the dense phase zone is faster. Meanwhile, the dynamic response of the volume fraction of each component in flue gas varies under different disturbances, it is mainly affected by the combustion conditions in the furnace, the corresponding changes in oxidant and coal. In addition, the dynamic variations of the bed temperature and the CO2 volume fraction in the flue gas are more obvious with faster response speed under the higher inlet O2 concentration and the combustion pressure. During the whole process, the volume fraction of CO2 in flue gas is about 90%, with the volume fraction of O2 under 8%. The dynamic characteristics obtained can provide a reference for the design and optimization of the control strategy in the combustion system.

参考文献/References:

[1] Hong J, Chaudhry G, Brisson J G, et al. Analysis of oxy-fuel combustion power cycle utilizing a pressurized coal combustor[J]. Energy, 2009, 34(9): 1332-1340. DOI:10.1016/j.energy.2009.05.015.
[2] Nemitallah M A, Habib M A, Badr H M, et al. Oxy-fuel combustion technology: Current status, applications, and trends[J]. International Journal of Energy Research, 2017, 41(12): 1670-1708. DOI:10.1002/er.3722.
[3] Liu Q W, Shi Y, Zhong W Q, et al. Co-firing of coal and biomass in oxy-fuel fluidized bed for CO2 capture: A review of recent advances[J]. Chinese Journal of Chemical Engineering, 2019, 27(10): 2261-2272. DOI:10.1016/j.cjche.2019.07.013.
[4] Leung D Y C,Caramanna G, Maroto-Valer M M. An overview of current status of carbon dioxide capture and storage technologies[J]. Renewable and Sustainable Energy Reviews, 2014, 39: 426-443. DOI:10.1016/j.rser.2014.07.093.
[5] Saastamoinen J J, Aho M J, Hämäläinen J P, et al. Pressurized pulverized fuel combustion in different concentrations of oxygen and carbon dioxide[J]. Energy & Fuels, 1996, 10(1): 121-133. DOI:10.1021/ef950107l.
[6] Yin C G, Yan J Y. Oxy-fuel combustion of pulverized fuels: Combustion fundamentals and modeling[J]. Applied Energy, 2016, 162: 742-762. DOI:10.1016/j.apenergy.2015.10.149.
[7] Duan Y Q, Duan L B, Anthony E J, et al. Nitrogen and sulfur conversion during pressurized pyrolysis under CO2 atmosphere in fluidized bed[J]. Fuel, 2017, 189: 98-106. DOI:10.1016/j.fuel.2016.10.080.
[8] 陈超, 邵应娟, 钟文琪, 等. 煤在加压流化床富氧燃烧条件下的碳转化规律[J]. 东南大学学报(自然科学版), 2019, 49(1): 171-177. DOI:10.3969/j.issn.1001-0505.2019.01.024.
Chen C, Shao Y J, Zhong W Q, et al. Carbon conversion rules of oxy-fuel coal combustion in pressurized fluidized bed[J].Journal of Southeast University(Natural Science Edition), 2019, 49(1): 171-177. DOI:10.3969/j.issn.1001-0505.2019.01.024. (in Chinese)
[9] Gong Z, Shao Y J, Pang L, et al. Study on the emission characteristics of nitrogen oxides with coal combustion in pressurized fluidized bed[J]. Chinese Journal of Chemical Engineering, 2019, 27(5): 1177-1183. DOI:10.1016/j.cjche.2018.07.020.
[10] Li L, Duan Y Q, Duan L B, et al. Flow characteristics in pressurized oxy-fuel fluidized bed under hot condition[J]. International Journal of Multiphase Flow, 2018, 108: 1-10. DOI:10.1016/j.ijmultiphaseflow.2018.06.020.
[11] Lasek J A, Janusz M, Zuwaa J, et al. Oxy-fuel combustion of selected solid fuels under atmospheric and elevated pressures[J]. Energy, 2013, 62: 105-112. DOI:10.1016/j.energy.2013.04.079.
[12] Shao Y J, Gu J R, Zhong W Q, et al. Determination of minimum fluidization velocity in fluidized bed at elevated pressures and temperatures using CFD simulations[J]. Powder Technology, 2019, 350: 81-90. DOI:10.1016/j.powtec.2019.03.039.
[13] Adamczyk W P, Kozoub P, W?cel G, et al. Modeling oxy-fuel combustion in a 3D circulating fluidized bed using the hybrid Euler-Lagrange approach[J]. Applied Thermal Engineering, 2014, 71(1): 266-275. DOI:10.1016/j.applthermaleng.2014.06.063.
[14] Shi Y, Zhong W, Shao Y, et al. Energy efficiency analysis of pressurized oxy-coal combustion system utilizing circulating fluidized bed [J]. Applied Thermal Engineering, 2019, 150:1104-1115.
[15] Chen S Y, Yu R, Soomro A, et al. Thermodynamic assessment and optimization of a pressurized fluidized bed oxy-fuel combustion power plant with CO2 capture[J]. Energy, 2019, 175: 445-455. DOI:10.1016/j.energy.2019.03.090.
[16] Deng S M, Hynes R. Thermodynamic analysis and comparison on oxy-fuel power generation process[J]. Journal of Engineering for Gas Turbines and Power, 2009, 131(5): 053001. DOI:10.1115/1.3078204.
[17] Alobaid F, Mertens N, Starkloff R, et al. Progress in dynamic simulation of thermal power plants[J]. Progress in Energy and Combustion Science, 2017, 59: 79-162. DOI:10.1016/j.pecs.2016.11.001.
[18] Jin B, Zhao H B, Zheng C G. Dynamic modeling and control for pulverized-coal-fired oxy-combustion boiler island[J]. International Journal of Greenhouse Gas Control, 2014, 30:97-117. DOI:10.1016/j.ijggc.2014.09.002.
[19] Yang C, Gou X L. Dynamic modeling and simulation of a 410t/h Pyroflow CFB boiler[J]. Computers & Chemical Engineering, 2006, 31(1): 21-31. DOI:10.1016/j.compchemeng.2006.04.006.
[20] Haryanto A, Hong K S. Modeling and simulation of an oxy-fuel combustion boiler system with flue gas recirculation[J]. Computers & Chemical Engineering, 2011, 35(1): 25-40. DOI:10.1016/j.compchemeng.2010.05.001.
[21] Lappalainen J, Tourunen A, Mikkonen H, et al. Modelling and dynamic simulation of a supercritical, oxy combustion circulating fluidized bed power plant concept: Firing mode switching case[J]. International Journal of Greenhouse Gas Control, 2014, 28: 11-24. DOI:10.1016/j.ijggc.2014.06.015.
[22] Luo W, Wang Q, Huang X H, et al. Dynamic simulation and transient analysis of a 3 MWth oxy-fuel combustion system[J]. International Journal of Greenhouse Gas Control, 2015, 35: 138-149. DOI:10.1016/j.ijggc.2015.02.003.
[23] Zhou J X, Shao Z, Si F Q, et al. Dynamic tests and results in an oxy-fuel circulating fluidized bed combustor with warm flue gas recycle[J]. Energy & Fuels, 2014, 28(12): 7616-7620. DOI:10.1021/ef502006f.
[24] 高大明, 陈鸿伟, 谷俊杰, 等. 富氧燃烧循环流化床锅炉烟气动态特性与运行经济性分析[J]. 中国电机工程学报, 2014(z1): 112-121. DOI:10.13334/j.0258-8013.pcsee.2014.S.016.
Gao D M, Chen H W,Gu J J, et al. Flue gas dynamic characteristics and operation economic analysis of oxy-fuel combustion circulating fluidized bed boiler[J]. Proceedings of the CSEE, 2014(z1): 112-121. DOI:10.13334/j.0258-8013.pcsee.2014.S.016. (in Chinese)
[25] 周建新, 邵壮, 李崇, 等. 基于Aspen平台的Oxy-CFB燃烧侧动态特性模拟[J]. 东南大学学报(自然科学版), 2014, 44(6): 1187-1193. DOI:10.3969/j.issn.1001-0505.2014.06.017.
Zhou J X, Shao Z, Li C, et al. Dynamic characteristics of oxy-CFB combustion system based on Aspen[J].Journal of Southeast University(Natural Science Edition), 2014, 44(6): 1187-1193. DOI:10.3969/j.issn.1001-0505.2014.06.017. (in Chinese)
[26] 颜云. 富氧燃烧循环流化床锅炉仿真建模与动态特性研究[D]. 南京: 东南大学, 2017.
  Yan Y. Simulation modeling and dynamic characteristics of oxy-combustion circulating fluidized bed boiler[D]. Nanjing: Southeast University, 2017.(in Chinese)
[27] Basu P. Combustion of coal in circulating fluidized-bed boilers: A review[J]. Chemical Engineering Science, 1999, 54(22): 5547-5557. DOI:10.1016/s0009-2509(99)00285-7.
[28] Huilin L. A coal combustion model for circulating fluidized bed boilers[J]. Fuel, 2000, 79(2): 165-172. DOI:10.1016/s0016-2361(99)00139-8.
[29] 毛玉如. 循环流化床富氧燃烧技术的试验和理论研究[D]. 杭州: 浙江大学, 2003.
  Mao Y R. Theoretical and experimental study on oxygen-enriched combustion technology in circulating fluidized bed[D]. Hangzhou: Zhejiang University, 2003.(in Chinese)
[30] Pang L, Shao Y J, Zhong W Q, et al. Experimental investigation on the coal combustion in a pressurized fluidized bed[J]. Energy, 2018, 165: 1119-1128. DOI:10.1016/j.energy.2018.09.198.
[31] Rajan R R, Wen C Y. A comprehensive model for fluidized bed coal combustors[J]. AIChE Journal, 1980, 26(4): 642-655. DOI:10.1002/aic.690260416.
[32] 霍志红. 增压富氧燃烧CFB传热特性研究[D]. 北京: 华北电力大学, 2011.
  Huo Z H. Study on heat transfer of the pressurized oxygen-enriched combustion circulating fluidized bed[D]. Beijing: North China Electric Power University, 2011.(in Chinese)
[33] 章名耀, 李大骥, 金保升. 增压流化床联合循环发电技术 [M]. 南京: 东南大学出版社, 1998:256-301.
[34] 陈超, 邵应娟, 钟文琪, 等. 加压流化床煤富氧燃烧的CO2生成特性研究[J]. 工程热物理学报, 2019, 40(9): 2058-2064.
  Chen C, Shao Y J, Zhong W Q, et al. Study on CO2 generation characteristics of oxy-fuel coal combustion in pressurized fluidized bed[J]. Journal of Engineering Thermophysics, 2019, 40(9): 2058-2064.(in Chinese)
[35] 李政, 王哲, 倪维斗. 循环流化床全工况实时动态数学模型的研究[J]. 动力工程, 2000, 20(1): 511-514. DOI:10.3969/j.issn.1674-7607.2000.01.002.
Li Z, Wang Z, Ni W D.Study of full working scope dynamic mathematical model for CFBC[J]. Power Engineering, 2000,20(1): 511-514. DOI:10.3969/j.issn.1674-7607.2000.01.002. (in Chinese)
[36] Pang L, Shao Y J, Zhong W Q, et al. Experimental investigation of oxy-coal combustion in a 15 kWth pressurized fluidized bed combustor[J]. Energy & Fuels, 2019, 33(3): 1694-1703. DOI:10.1021/acs.energyfuels.8b02654.
[37] Lasek J A, Gód K, Janusz M, et al. Pressurized oxy-fuel combustion: A study of selected parameters[J]. Energy & Fuels, 2012, 26(11): 6492-6500. DOI:10.1021/ef201677f.
[38] Dobó Z, Backman M, Whitty K J. Experimental study and demonstration of pilot-scale oxy-coal combustion at elevated temperatures and pressures[J]. Applied Energy, 2019, 252: 113450. DOI:10.1016/j.apenergy.2019.113450.

相似文献/References:

[1]陈超,邵应娟,钟文琪,等.煤在加压流化床富氧燃烧条件下的碳转化规律[J].东南大学学报(自然科学版),2019,49(1):171.[doi:10.3969/j.issn.1001-0505.2019.01.024]
 Chen Chao,Shao Yingjuan,Zhong Wenqi,et al.Carbon conversion rules of oxy-fuel coal combustion in pressurized fluidized bed[J].Journal of Southeast University (Natural Science Edition),2019,49(2):171.[doi:10.3969/j.issn.1001-0505.2019.01.024]

备注/Memo

备注/Memo:
收稿日期: 2019-08-12.
作者简介: 魏莉(1996—),女,硕士生;钟文琪(联系人),男,博士,教授,博士生导师,wqzhong@seu.edu.cn.
基金项目: 国家自然科学基金重点资助项目(51736002)、国家自然科学基金面上资助项目(51876037).
引用本文: 魏莉,钟文琪,邵应娟.煤流化床加压富氧燃烧过程动态特性研究[J].东南大学学报(自然科学版),2020,50(2):358-367. DOI:10.3969/j.issn.1001-0505.2020.02.021.
更新日期/Last Update: 2020-03-20