参考文献/References:
[1] Hong J, Chaudhry G, Brisson J G, et al. Analysis of oxy-fuel combustion power cycle utilizing a pressurized coal combustor[J]. Energy, 2009, 34(9): 1332-1340. DOI:10.1016/j.energy.2009.05.015.
[2] Nemitallah M A, Habib M A, Badr H M, et al. Oxy-fuel combustion technology: Current status, applications, and trends[J]. International Journal of Energy Research, 2017, 41(12): 1670-1708. DOI:10.1002/er.3722.
[3] Liu Q W, Shi Y, Zhong W Q, et al. Co-firing of coal and biomass in oxy-fuel fluidized bed for CO2 capture: A review of recent advances[J]. Chinese Journal of Chemical Engineering, 2019, 27(10): 2261-2272. DOI:10.1016/j.cjche.2019.07.013.
[4] Leung D Y C,Caramanna G, Maroto-Valer M M. An overview of current status of carbon dioxide capture and storage technologies[J]. Renewable and Sustainable Energy Reviews, 2014, 39: 426-443. DOI:10.1016/j.rser.2014.07.093.
[5] Saastamoinen J J, Aho M J, Hämäläinen J P, et al. Pressurized pulverized fuel combustion in different concentrations of oxygen and carbon dioxide[J]. Energy & Fuels, 1996, 10(1): 121-133. DOI:10.1021/ef950107l.
[6] Yin C G, Yan J Y. Oxy-fuel combustion of pulverized fuels: Combustion fundamentals and modeling[J]. Applied Energy, 2016, 162: 742-762. DOI:10.1016/j.apenergy.2015.10.149.
[7] Duan Y Q, Duan L B, Anthony E J, et al. Nitrogen and sulfur conversion during pressurized pyrolysis under CO2 atmosphere in fluidized bed[J]. Fuel, 2017, 189: 98-106. DOI:10.1016/j.fuel.2016.10.080.
[8] 陈超, 邵应娟, 钟文琪, 等. 煤在加压流化床富氧燃烧条件下的碳转化规律[J]. 东南大学学报(自然科学版), 2019, 49(1): 171-177. DOI:10.3969/j.issn.1001-0505.2019.01.024.
Chen C, Shao Y J, Zhong W Q, et al. Carbon conversion rules of oxy-fuel coal combustion in pressurized fluidized bed[J].Journal of Southeast University(Natural Science Edition), 2019, 49(1): 171-177. DOI:10.3969/j.issn.1001-0505.2019.01.024. (in Chinese)
[9] Gong Z, Shao Y J, Pang L, et al. Study on the emission characteristics of nitrogen oxides with coal combustion in pressurized fluidized bed[J]. Chinese Journal of Chemical Engineering, 2019, 27(5): 1177-1183. DOI:10.1016/j.cjche.2018.07.020.
[10] Li L, Duan Y Q, Duan L B, et al. Flow characteristics in pressurized oxy-fuel fluidized bed under hot condition[J]. International Journal of Multiphase Flow, 2018, 108: 1-10. DOI:10.1016/j.ijmultiphaseflow.2018.06.020.
[11] Lasek J A, Janusz M, Zuwaa J, et al. Oxy-fuel combustion of selected solid fuels under atmospheric and elevated pressures[J]. Energy, 2013, 62: 105-112. DOI:10.1016/j.energy.2013.04.079.
[12] Shao Y J, Gu J R, Zhong W Q, et al. Determination of minimum fluidization velocity in fluidized bed at elevated pressures and temperatures using CFD simulations[J]. Powder Technology, 2019, 350: 81-90. DOI:10.1016/j.powtec.2019.03.039.
[13] Adamczyk W P, Kozoub P, W?cel G, et al. Modeling oxy-fuel combustion in a 3D circulating fluidized bed using the hybrid Euler-Lagrange approach[J]. Applied Thermal Engineering, 2014, 71(1): 266-275. DOI:10.1016/j.applthermaleng.2014.06.063.
[14] Shi Y, Zhong W, Shao Y, et al. Energy efficiency analysis of pressurized oxy-coal combustion system utilizing circulating fluidized bed [J]. Applied Thermal Engineering, 2019, 150:1104-1115.
[15] Chen S Y, Yu R, Soomro A, et al. Thermodynamic assessment and optimization of a pressurized fluidized bed oxy-fuel combustion power plant with CO2 capture[J]. Energy, 2019, 175: 445-455. DOI:10.1016/j.energy.2019.03.090.
[16] Deng S M, Hynes R. Thermodynamic analysis and comparison on oxy-fuel power generation process[J]. Journal of Engineering for Gas Turbines and Power, 2009, 131(5): 053001. DOI:10.1115/1.3078204.
[17] Alobaid F, Mertens N, Starkloff R, et al. Progress in dynamic simulation of thermal power plants[J]. Progress in Energy and Combustion Science, 2017, 59: 79-162. DOI:10.1016/j.pecs.2016.11.001.
[18] Jin B, Zhao H B, Zheng C G. Dynamic modeling and control for pulverized-coal-fired oxy-combustion boiler island[J]. International Journal of Greenhouse Gas Control, 2014, 30:97-117. DOI:10.1016/j.ijggc.2014.09.002.
[19] Yang C, Gou X L. Dynamic modeling and simulation of a 410t/h Pyroflow CFB boiler[J]. Computers & Chemical Engineering, 2006, 31(1): 21-31. DOI:10.1016/j.compchemeng.2006.04.006.
[20] Haryanto A, Hong K S. Modeling and simulation of an oxy-fuel combustion boiler system with flue gas recirculation[J]. Computers & Chemical Engineering, 2011, 35(1): 25-40. DOI:10.1016/j.compchemeng.2010.05.001.
[21] Lappalainen J, Tourunen A, Mikkonen H, et al. Modelling and dynamic simulation of a supercritical, oxy combustion circulating fluidized bed power plant concept: Firing mode switching case[J]. International Journal of Greenhouse Gas Control, 2014, 28: 11-24. DOI:10.1016/j.ijggc.2014.06.015.
[22] Luo W, Wang Q, Huang X H, et al. Dynamic simulation and transient analysis of a 3 MWth oxy-fuel combustion system[J]. International Journal of Greenhouse Gas Control, 2015, 35: 138-149. DOI:10.1016/j.ijggc.2015.02.003.
[23] Zhou J X, Shao Z, Si F Q, et al. Dynamic tests and results in an oxy-fuel circulating fluidized bed combustor with warm flue gas recycle[J]. Energy & Fuels, 2014, 28(12): 7616-7620. DOI:10.1021/ef502006f.
[24] 高大明, 陈鸿伟, 谷俊杰, 等. 富氧燃烧循环流化床锅炉烟气动态特性与运行经济性分析[J]. 中国电机工程学报, 2014(z1): 112-121. DOI:10.13334/j.0258-8013.pcsee.2014.S.016.
Gao D M, Chen H W,Gu J J, et al. Flue gas dynamic characteristics and operation economic analysis of oxy-fuel combustion circulating fluidized bed boiler[J]. Proceedings of the CSEE, 2014(z1): 112-121. DOI:10.13334/j.0258-8013.pcsee.2014.S.016. (in Chinese)
[25] 周建新, 邵壮, 李崇, 等. 基于Aspen平台的Oxy-CFB燃烧侧动态特性模拟[J]. 东南大学学报(自然科学版), 2014, 44(6): 1187-1193. DOI:10.3969/j.issn.1001-0505.2014.06.017.
Zhou J X, Shao Z, Li C, et al. Dynamic characteristics of oxy-CFB combustion system based on Aspen[J].Journal of Southeast University(Natural Science Edition), 2014, 44(6): 1187-1193. DOI:10.3969/j.issn.1001-0505.2014.06.017. (in Chinese)
[26] 颜云. 富氧燃烧循环流化床锅炉仿真建模与动态特性研究[D]. 南京: 东南大学, 2017.
Yan Y. Simulation modeling and dynamic characteristics of oxy-combustion circulating fluidized bed boiler[D]. Nanjing: Southeast University, 2017.(in Chinese)
[27] Basu P. Combustion of coal in circulating fluidized-bed boilers: A review[J]. Chemical Engineering Science, 1999, 54(22): 5547-5557. DOI:10.1016/s0009-2509(99)00285-7.
[28] Huilin L. A coal combustion model for circulating fluidized bed boilers[J]. Fuel, 2000, 79(2): 165-172. DOI:10.1016/s0016-2361(99)00139-8.
[29] 毛玉如. 循环流化床富氧燃烧技术的试验和理论研究[D]. 杭州: 浙江大学, 2003.
Mao Y R. Theoretical and experimental study on oxygen-enriched combustion technology in circulating fluidized bed[D]. Hangzhou: Zhejiang University, 2003.(in Chinese)
[30] Pang L, Shao Y J, Zhong W Q, et al. Experimental investigation on the coal combustion in a pressurized fluidized bed[J]. Energy, 2018, 165: 1119-1128. DOI:10.1016/j.energy.2018.09.198.
[31] Rajan R R, Wen C Y. A comprehensive model for fluidized bed coal combustors[J]. AIChE Journal, 1980, 26(4): 642-655. DOI:10.1002/aic.690260416.
[32] 霍志红. 增压富氧燃烧CFB传热特性研究[D]. 北京: 华北电力大学, 2011.
Huo Z H. Study on heat transfer of the pressurized oxygen-enriched combustion circulating fluidized bed[D]. Beijing: North China Electric Power University, 2011.(in Chinese)
[33] 章名耀, 李大骥, 金保升. 增压流化床联合循环发电技术 [M]. 南京: 东南大学出版社, 1998:256-301.
[34] 陈超, 邵应娟, 钟文琪, 等. 加压流化床煤富氧燃烧的CO2生成特性研究[J]. 工程热物理学报, 2019, 40(9): 2058-2064.
Chen C, Shao Y J, Zhong W Q, et al. Study on CO2 generation characteristics of oxy-fuel coal combustion in pressurized fluidized bed[J]. Journal of Engineering Thermophysics, 2019, 40(9): 2058-2064.(in Chinese)
[35] 李政, 王哲, 倪维斗. 循环流化床全工况实时动态数学模型的研究[J]. 动力工程, 2000, 20(1): 511-514. DOI:10.3969/j.issn.1674-7607.2000.01.002.
Li Z, Wang Z, Ni W D.Study of full working scope dynamic mathematical model for CFBC[J]. Power Engineering, 2000,20(1): 511-514. DOI:10.3969/j.issn.1674-7607.2000.01.002. (in Chinese)
[36] Pang L, Shao Y J, Zhong W Q, et al. Experimental investigation of oxy-coal combustion in a 15 kWth pressurized fluidized bed combustor[J]. Energy & Fuels, 2019, 33(3): 1694-1703. DOI:10.1021/acs.energyfuels.8b02654.
[37] Lasek J A, Gód K, Janusz M, et al. Pressurized oxy-fuel combustion: A study of selected parameters[J]. Energy & Fuels, 2012, 26(11): 6492-6500. DOI:10.1021/ef201677f.
[38] Dobó Z, Backman M, Whitty K J. Experimental study and demonstration of pilot-scale oxy-coal combustion at elevated temperatures and pressures[J]. Applied Energy, 2019, 252: 113450. DOI:10.1016/j.apenergy.2019.113450.