[1]韦中,宋光明,乔贵方,等.脊柱型四足机器人粗糙可变地形对角小跑运动控制[J].东南大学学报(自然科学版),2020,50(2):385-394.[doi:10.3969/j.issn.1001-0505.2020.02.024]
 Wei Zhong,Song Guangming,Qiao Guifang,et al.Trotting locomotion control for quadruped robot with active spine over rough deformable terrain[J].Journal of Southeast University (Natural Science Edition),2020,50(2):385-394.[doi:10.3969/j.issn.1001-0505.2020.02.024]
点击复制

脊柱型四足机器人粗糙可变地形对角小跑运动控制()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第2期
页码:
385-394
栏目:
自动化
出版日期:
2020-03-20

文章信息/Info

Title:
Trotting locomotion control for quadruped robot with active spine over rough deformable terrain
作者:
韦中宋光明乔贵方何淼宋爱国
东南大学仪器科学与工程学院, 南京 210096; 东南大学生物电子学国家重点实验室, 南京 210096; 东南大学江苏省远程测控技术重点实验室, 南京 210096
Author(s):
Wei Zhong Song Guangming Qiao Guifang He Miao Song Aiguo
School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China
State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
Jiangsu Key Laboratory of Remote Measurement and Control, Southeast University, Nanjing 210096, China
关键词:
四足机器人 主动脊柱 对角小跑 中枢模式发生器 粗糙地形 可变地形
Keywords:
quadruped robot active spine trotting central pattern generator(CPG) rough terrain deformable terrain
分类号:
TP242.6
DOI:
10.3969/j.issn.1001-0505.2020.02.024
摘要:
为了实现脊柱型四足机器人在粗糙可变地形上的对角小跑运动,在运动学分析的基础上提出了基于中枢模式发生器的控制方法,包括步态规划、地面倾角估计、姿态控制、碰撞反射、踏空反射和侧向步反射6个模块.步态规划生成控制机器人运动的腿部和脊柱关节信号;地面倾角估计估计地形倾角,并根据倾角调节规划的足端轨迹;姿态控制控制机体和地面保持平行并控制机器人的航向角;碰撞反射控制摆动腿在碰到障碍物时可以快速越过并恢复到规划的运动轨迹;踏空反射控制支撑腿在遇到下凹地形时可以快速撑地并恢复到规划的运动轨迹;侧向步反射抵消外力的影响,防止机器人侧向倾覆.通过控制机器人在不同地形运动可以分步调节并确定各模块的控制参数.仿真结果显示,利用提出的控制方法脊柱型四足机器人可以顺利通过包含外力干扰、台阶、斜坡和楼梯的结构化地形,以及由不同角度随机排列直角三角体模拟的粗糙地形、由不同角度随机排列直角三角体和球形颗粒模拟的粗糙可变地形.
Abstract:
To achieve the trotting locomotion of the quadruped robot with an active spine on the rough deformable terrain, a central pattern generator(CPG)based control method was proposed by the kinematics analysis, including six modules: gait planning, ground inclination estimator, posture control, stumbling reflex, step-missing reflex, and lateral stepping reflex. The gait planning module was used to generate the joint signals of legs and spine. The ground inclination estimator was used to calculate the ground inclination and adjust the planned foot trajectory according to the ground inclination. The posture control module made the body parallel to the ground and control the heading angle of the robot. The stumbling reflex made the legs cross barriers and then return to the planned motion trajectory quickly when they came in contact with barriers in the swing phase. The step-missing reflex made the legs contact with the ground and then return to the planned motion trajectory quickly when they missed their steps in the stance phase. The lateral stepping reflex eliminated the effects on the external force, preventing the robot from capsizing sideways. By making the robot move in different terrains, the control parameters of each module could be adjusted and determined step by step. The simulation results show that the quadruped robot with an active spine can successfully cross the structured terrain,including external interference, steps, slopes, and stairs, the rough terrain simulated by rectangular triangular prisms randomly arranged at different angles, and the rough deformable terrain simulated by rectangular triangular prisms randomly arranged at different angles and spheres with the proposed method.

参考文献/References:

[1] 郑浩峻,张秀丽.足式机器人生物控制方法与应用[M].北京:清华大学出版社,2011:1.
[2] 谢林枫, 蒋超, 孙秋芹, 等. 基于 AMC 算法的变电站巡检机器人地图创建与定位[J]. 电力工程技术, 2019, 38(5): 16-23. DOI: 10.12158/j.2096-3203.2019.05.003.
Xie L F, Jiang C, Sun Q Q, et al. The global map’s creating and positioning of substation inspection robot based on adaptive Monte Carlo particle filter algorithm[J]. Electric Power Engineering Technology, 2019, 38(5): 16-23.DOI:10.12158/j.2096-3203.2019.05.003. (in Chinese)
[3] 王小波, 张在琛, 胡成博, 等. 一种改进的UWB空间定位方法研究[J]. 电力工程技术, 2018, 37(3): 72-77. DOI:10.3969/j.issn.1009-0665.2018.03.013.
Wang X B, Zhang Z C, Hu C B, et al. Research on an improved UWB space positioning method[J]. Jiangsu Electrical Engineering, 2018, 37(3): 72-77. DOI:10.3969/j.issn.1009-0665.2018.03.013. (in Chinese)
[4] Zawacki C, Reverdy P, Koditschek D E. Gait optimization on a quadrupedal RHex using multiarmed bandits [EB/OL].(2018)[2019-07]. https://camzawacki.com/static/pdfs/bandit-paper.pdf.
[5] Haynes G C, Pusey J, Knopf R, et al. Laboratory on legs: An architecture for adjustable morphology with legged robots[C]//Unmanned Systems Technology ⅪⅤ. Baltimore, Maryland, USA: International Society for Optics and Photonics, 2012:83870W. DOI: 10.1117/12.920678
[6] Chen S C, Huang K J, Chen W H, et al. Quattroped: A leg-wheel transformable robot[J]. ASME Transactions on Mechatronics, 2014, 19(2): 730-742. DOI:10.1109/tmech.2013.2253615.
[7] Chen W H, Lin H S, Lin Y M, et al. TurboQuad: A novel leg-wheel transformable robot with smooth and fast behavioral transitions[J]. IEEE Transactions on Robotics, 2017, 33(5): 1025-1040. DOI:10.1109/tro.2017.2696022.
[8] Soyguder S, Boles W. SLEGS robot: Development and design of a novel flexible and self-reconfigurable robot leg[J]. Industrial Robot: An International Journal, 2017, 44(3): 377-391. DOI:10.1108/ir-03-2016-0109.
[9] Drotman D, Jadhav S, Karimi M, et al. 3D printed soft actuators for a legged robot capable of navigating unstructured terrain[C]//2017 IEEE International Conference on Robotics and Automation. Singapore, 2017: 5532-5538. DOI:10.1109/icra.2017.7989652.
[10] Spröwitz A, Tuleu A, Vespignani M, et al. Towards dynamic trot gait locomotion: Design, control, and experiments with Cheetah-cub, a compliant quadruped robot[J]. The International Journal of Robotics Research, 2013, 32(8): 932-950. DOI:10.1177/0278364913489205.
[11] Raibert M, Blankespoor K, Nelson G, et al. BigDog, the rough-terrain quadruped robot[J]. IFAC Proceedings Volumes, 2008, 41(2): 10822-10825. DOI:10.3182/20080706-5-kr-1001.01833.
[12] Neuhaus P D, Pratt J E, Johnson M J. Comprehensive summary of the institute for human and machine cognition’s experience with LittleDog[J]. The International Journal of Robotics Research, 2011, 30(2): 216-235. DOI:10.1177/0278364910390538.
[13] Hutter M, Gehring C, Lauber A, et al. ANYmal-toward legged robots for harsh environments[J]. Advanced Robotics, 2017, 31(17): 918-931. DOI:10.1080/01691864.2017.1378591.
[14] Mastalli C, Havoutis I, Focchi M, et al. Motion planning for quadrupedal locomotion: Coupled planning, terrain mapping and whole-body control[EB/OL].(2018)[2019-07]. https://hal.laas.fr/hal-01673438.
[15] Zhang S S, Fan M Q, Li Y B, et al. Generation of a continuous free gait for quadruped robot over rough terrains[J]. Advanced Robotics, 2019, 33(2): 74-89. DOI:10.1080/01691864.2019.1566089.
[16] Kimura H, Fukuoka Y, Cohen A H. Adaptive dynamic walking of a quadruped robot on natural ground based on biological concepts[J]. The International Journal of Robotics Research, 2007, 26(5): 475-490. DOI:10.1177/0278364907078089.
[17] Ajallooeian M. Pattern generation for rough terrain locomotion with quadrupedal robots[D]. Lausanne,Switzerland: Swiss federal Institute of Technology in Lausanne, 2015. DOI: 10.5075/epfl-thesis-6518.
[18] Fukui T, Fujisawa H, Otaka K, et al. Autonomous gait transition and galloping over unperceived obstacles of a quadruped robot with CPG modulated by vestibular feedback[J]. Robotics and Autonomous Systems, 2019, 111: 1-19. DOI:10.1016/j.robot.2018.10.002.
[19] Raibert M H. Legged robots that balance[M]. Cambridge, USA: MIT Press, 1986: 83-113.
[20] 鄂明成, 刘虎, 张秀丽, 等. 一种粗糙地形下四足仿生机器人的柔顺步态生成方法[J]. 机器人, 2014, 36(5): 584-591. DOI:10.13973/j.cnki.robot.2014.0584.
E M C, Liu H, Zhang X L, et al. Compliant gait generation for a quadruped bionic robot walking on rough terrains[J]. Robot, 2014, 36(5): 584-591. DOI:10.13973/j.cnki.robot.2014.0584. (in Chinese)
[21] Zhang G T, Rong X W, Hui C, et al. Torso motion control and toe trajectory generation of a trotting quadruped robot based on virtual model control[J]. Advanced Robotics, 2016, 30(4): 284-297. DOI:10.1080/01691864.2015.1113889.
[22] Bledt G, Powell M J, Katz B, et al. MIT cheetah 3: Design and control of a robust, dynamic quadruped robot[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems. Madrid, Spain, 2018: 2245-2252. DOI:10.1109/iros.2018.8593885.
[23] Wei Z, Song G M, Sun H Y, et al. Turning strategies for the bounding quadruped robot with an active spine[J]. Industrial Robot: the International Journal of Robotics Research and Application, 2018, 45(5): 657-668. DOI:10.1108/ir-06-2018-0119.
[24] 韦中, 宋光明, 孙慧玉, 等. 脊柱型四足机器人运动学建模及对角小跑步态规划[J]. 东南大学学报(自然科学版), 2019, 49(6): 1019-1025.DOI:10.39691j.issn.1001-0505.2019.06.001.
Wei Z, Song G M, Sun H Y, et al. Kinematic modeling and trotting gait planning for the quadruped robot with an active spine[J].Journal of Southeast University(Natural Science Edition), 2019, 49(6): 1019-1025.DOI:10.39691j.issn.1001-0505.2019.06.001. (in Chinese)

相似文献/References:

[1]葛卓,罗庆生,贾燕,等.基于生物反射模型的四足机器人坡面运动控制与越障研究[J].东南大学学报(自然科学版),2017,47(4):697.[doi:10.3969/j.issn.1001-0505.2017.04.012]
 Ge Zhuo,Luo Qingsheng,Jia Yan,et al.Study on quadruped robot ramp-trotting and obstacle-crossing based on biological reflex model[J].Journal of Southeast University (Natural Science Edition),2017,47(2):697.[doi:10.3969/j.issn.1001-0505.2017.04.012]
[2]韦中,宋光明,孙慧玉,等.脊柱型四足机器人运动学建模及对角小跑步态规划[J].东南大学学报(自然科学版),2019,49(6):1019.[doi:10.3969/j.issn.1001-0505.2019.06.001]
 Wei Zhong,Song Guangming,Sun Huiyu,et al.Kinematic modeling and trotting gait planning for the quadruped robot with an active spine[J].Journal of Southeast University (Natural Science Edition),2019,49(2):1019.[doi:10.3969/j.issn.1001-0505.2019.06.001]

备注/Memo

备注/Memo:
收稿日期: 2019-08-10.
作者简介: 韦中(1989—),男,博士生;宋光明(联系人),男,博士,教授,博士生导师,mikesong@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(61375076)、东南大学优秀博士学位论文培养基金资助项目(YBJJ1794).
引用本文: 韦中,宋光明,乔贵方,等.脊柱型四足机器人粗糙可变地形对角小跑运动控制[J].东南大学学报(自然科学版),2020,50(2):385-394. DOI:10.3969/j.issn.1001-0505.2020.02.024.
更新日期/Last Update: 2020-03-20