[1]廖聿宸,张坤,宗周红,等.基于S型函数的随机子空间模型定阶方法[J].东南大学学报(自然科学版),2020,50(3):440-446.[doi:10.3969/j.issn.1001-0505.2020.03.005]
 Liao Yuchen,Zhang Kun,Zong Zhouhong,et al.Model order determination method of stochastic subspace based on S-type function[J].Journal of Southeast University (Natural Science Edition),2020,50(3):440-446.[doi:10.3969/j.issn.1001-0505.2020.03.005]
点击复制

基于S型函数的随机子空间模型定阶方法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第3期
页码:
440-446
栏目:
土木工程
出版日期:
2020-05-20

文章信息/Info

Title:
Model order determination method of stochastic subspace based on S-type function
作者:
廖聿宸1张坤2宗周红1吴睿1
1东南大学土木工程学院, 南京 211189; 2中交第二公路勘察设计研究院有限公司, 武汉430056
Author(s):
Liao Yuchen1 Zhang Kun2 Zong Zhouhong1 Wu Rui1
1School of Civil Engineering, Southeast University, Nanjing 211189, China
2CCCC Second Highway consultants Co., Ltd., Wuhan 430056, China
关键词:
结构健康监测 随机子空间识别 模型定阶 奇异值分解 S型函数
Keywords:
structure health monitoring stochastic subspace identification order determination singular value decomposition S-type function
分类号:
TU317
DOI:
10.3969/j.issn.1001-0505.2020.03.005
摘要:
为了在应用随机子空间识别方法时合理确定模型阶次,提出了一种基于函数拟合的模型定阶方法.首先,对投影矩阵进行奇异值分解,然后利用S型函数对归一化奇异值进行拟合,最后根据拟合函数估算模型阶次.基于弹簧-振子系统的仿真算例对不同噪声水平下的模型定阶结果进行研究,并通过斜拉桥的模态分析来验证方法的应用效果.算例结果表明,噪声水平为0%、5%、10%、15%、20%时识别模型阶次是相同的,说明所提方法具有良好的稳定性.根据阶次识别结果得到的模态频率与实桥环境振动试验结果的相对误差在5%以内,从而验证了所提方法的有效性.
Abstract:
A model order determination method based on function fitting was proposed to reasonably determine the model order during the application of the stochastic subspace identification method. Firstly, the singular value decomposition was performed on the projection matrix. Then, the S-type function was adopted to fit the normalized singular value. Finally, the model order was estimated according to the fitting function. The simulation of a spring-vibrator system was used to study the results of the order determination at different noise levels. Modal analysis of a cable-stayed bridge was used to verify the application effect of the method. The simulation results indicate that the recognized model orders at the noise levels of 0%, 5%, 10%, 15% and 20% are the same, showing the good stability of the proposed method. The relative errors between the modal frequencies based on the results of order determination and the ambient vibration test results of the real bridge are less than 5%, proving the effectiveness of the proposed method.

参考文献/References:

[1] 刘宇飞, 辛克贵, 樊健生, 等. 环境激励下结构模态参数识别方法综述[J]. 工程力学, 2014,31(4): 46-53.
  Liu Y F, Xin K G, Fan J S, et al. A review of structure modal identification methods through ambient excitation[J]. Engineering Mechanics, 2014, 31(4): 46-53.(in Chinese)
[2] Fan G, Li J, Hao H. Improved automated operational modal identification of structures based on clustering[J].Structural Control and Health Monitoring, 2019, 26(12): e2450. DOI:10.1002/stc.2450.
[3] Sun M, Makki Alamdari M, Kalhori H. Automated operational modal analysis of a cable-stayed bridge[J]. Journal of Bridge Engineering, 2017, 22(12): 05017012. DOI:10.1061/(asce)be.1943-5592.0001141.
[4] Peeters B, de Roeck G. Reference-based stochastic subspace identification for output-only modal analysis[J].Mechanical Systems and Signal Processing, 1999, 13(6): 855-878. DOI:10.1006/mssp.1999.1249. (in Chinese)
[5] 常军, 张启伟, 孙利民. 随机子空间产生虚假模态及模态遗漏的原因分析[J]. 工程力学, 2007, 24(11): 57-62.
  Chang J, Zhang Q W, Sun L M. Analysis how stochastic subspace identification brings false modes and mode absence[J]. Engineering Mechanics, 2007, 24(11): 57-62.(in Chinese)
[6] 常军, 张启伟, 孙利民. 稳定图方法在随机子空间识别模态参数中的应用[J]. 工程力学, 2007, 24(2): 39-44.
  Chang J, Zhang Q W, Sun L M. Application of stabilization diagram for modal parameter identification using stochastic subspace method[J]. Engineering Mechanics, 2007, 24(2): 39-44.(in Chinese)
[7] 易伟建, 刘翔. 动力系统模型阶次的确定[J]. 振动与冲击, 2008, 27(11): 12-16, 194-195. DOI:10.13465/j.cnki.jvs.2008.11.033.
Yi W J, Liu X. Order identification of dynamic system model[J]. Journal of Vibration and Shock, 2008, 27(11): 12-16, 194-195. DOI:10.13465/j.cnki.jvs.2008.11.033. (in Chinese)
[8] James Hu S L, Bao X X, Li H J. Model order determination and noise removal for modal parameter estimation[J].Mechanical Systems and Signal Processing, 2010, 24(6): 1605-1620. DOI:10.1016/j.ymssp.2010.01.005.
[9] 王树青, 林裕裕, 孟元栋, 等. 一种基于奇异值分解技术的模型定阶方法[J]. 振动与冲击, 2012,31(15): 87-91. DOI:10.13465/j.cnki.jvs.2012.15.002.
Wang S Q, Lin Y Y, Meng Y D, et al. Model order determination based on singular value decomposition[J]. Journal of Vibration and Shock, 2012, 31(15): 87-91. DOI:10.13465/j.cnki.jvs.2012.15.002. (in Chinese)
[10] 朱锐, 杭晓晨, 姜东, 等. 基于奇异值分解的ERA改进算法及模态定阶[J]. 振动.测试与诊断, 2018,38(1): 115-122, 210. DOI:10.16450/j.cnki.issn.1004-6801.2018.01.018.
Zhu R, Hang X C, Jiang D, et al. Improved eigensystem realization algorithm and mode order determination based on SVD[J]. Journal of Vibration,Measurement & Diagnosis, 2018, 38(1): 115-122, 210. DOI:10.16450/j.cnki.issn.1004-6801.2018.01.018. (in Chinese)
[11] van Overschee P, de Moor B. Subspace algorithms for the stochastic identification problem[J].Automatica, 1993, 29(3): 649-660. DOI:10.1016/0005-1098(93)90061-w.
[12] van Overschee P, de Moor B. Subspace identification for linear systems[M]. Boston, MA, USA: Springer, 1996. DOI:10.1007/978-1-4613-0465-4.
[13] Ogita T, Aishima K. Iterative refinement for singular value decomposition based on matrix multiplication[J].Journal of Computational and Applied Mathematics, 2020, 369: 112512. DOI:10.1016/j.cam.2019.112512.
[14] Peeters B, de Roeck G. Stochastic system identification for operational modal analysis: A review[J].Journal of Dynamic Systems, Measurement, and Control, 2001, 123(4): 659-667. DOI:10.1115/1.1410370.
[15] Lindfield G, Penny J. Numerical methods [M]. 4th ed. Oxford, UK: Elsevier, 2019: 336-338. DOI: 10.1016/B978-0-12-812256.
[16] 孙利民, 周毅, 谢大圻. 环境因素对斜拉桥模态频率影响的周期特性[J]. 同济大学学报(自然科学版), 2015,43(10): 1454-1462. DOI:10.11908/j.issn.0253-374x.2015.10.002.
Sun L M, Zhou Y, Xie D Q. Periodic characteristics of environmental effects on modal frequencies of a cable-stayed bridge[J]. Journal of Tongji University(Natural Science), 2015, 43(10): 1454-1462.DOI:10.11908/j.issn.0253-374x.2015.10.002. (in Chinese)

相似文献/References:

[1]滕军,卢伟.基于多类型传感器信息的结构损伤识别方法[J].东南大学学报(自然科学版),2010,40(3):538.[doi:10.3969/j.issn.1001-0505.2010.03.020]
 Teng Jun,Lu Wei.Structural damage identification method based on multi-type sensors[J].Journal of Southeast University (Natural Science Edition),2010,40(3):538.[doi:10.3969/j.issn.1001-0505.2010.03.020]
[2]丁幼亮,王晓晶,王高新,等.珠江黄埔大桥钢箱梁温度长期监测与分析[J].东南大学学报(自然科学版),2012,42(5):945.[doi:10.3969/j.issn.1001-0505.2012.05.027]
 Ding Youliang,Wang Xiaojing,Wang Gaoxin,et al.Long-term temperature monitoring and analysis of steel box girders of Pearl River Huangpu Bridge[J].Journal of Southeast University (Natural Science Edition),2012,42(3):945.[doi:10.3969/j.issn.1001-0505.2012.05.027]
[3]孙正华,李兆霞,陈鸿天.结构行为一致多尺度有限元模型修正及验证[J].东南大学学报(自然科学版),2009,39(1):85.[doi:10.3969/j.issn.1001-0505.2009.01.016]
 Sun Zhenghua,Li Zhaoxia,Chan Hungtin Tommy.Updating and verification for multi-scale finite element model of structure behavior[J].Journal of Southeast University (Natural Science Edition),2009,39(3):85.[doi:10.3969/j.issn.1001-0505.2009.01.016]
[4]缪长青,李爱群,韩晓林,等.润扬大桥结构健康监测策略[J].东南大学学报(自然科学版),2005,35(5):780.[doi:10.3969/j.issn.1001-0505.2005.05.027]
 Miao Changqing,Li Aiqun,Han Xiaolin,et al.Monitor strategy for the structural health monitoring system of Runyang Bridge[J].Journal of Southeast University (Natural Science Edition),2005,35(3):780.[doi:10.3969/j.issn.1001-0505.2005.05.027]
[5]邓扬,李爱群,丁幼亮,等.基于长期监测数据的大跨桥梁结构伸缩缝损伤识别[J].东南大学学报(自然科学版),2011,41(2):336.[doi:10.3969/j.issn.1001-0505.2011.02.024]
 Deng Yang,Li Aiqun,Ding Youliang,et al.Damage identification of expansion joints in long span bridge using long-term monitoring data[J].Journal of Southeast University (Natural Science Edition),2011,41(3):336.[doi:10.3969/j.issn.1001-0505.2011.02.024]
[6]丁幼亮,李爱群,耿方方.考虑环境因素影响的悬索桥整体状态预警方法[J].东南大学学报(自然科学版),2010,40(5):1052.[doi:10.3969/j.issn.1001-0505.2010.05.032]
 Ding Youliang,Li Aiqun,Geng Fangfang.Monitoring and warning of health conditions for suspension bridges under varying environmental conditions[J].Journal of Southeast University (Natural Science Edition),2010,40(3):1052.[doi:10.3969/j.issn.1001-0505.2010.05.032]
[7]吴佰建,李兆霞,王滢,等.桥梁结构动态应变监测信息的分离与提取[J].东南大学学报(自然科学版),2008,38(5):767.[doi:10.3969/j.issn.1001-0505.2008.05.006]
 Wu Baijian,Li Zhaoxia,Wang Ying,et al.Separation and extraction of bridge dynamic strain data[J].Journal of Southeast University (Natural Science Edition),2008,38(3):767.[doi:10.3969/j.issn.1001-0505.2008.05.006]
[8]周广东,等.基于实测数据的润扬大桥悬索桥全寿命评估随机温度场模拟[J].东南大学学报(自然科学版),2013,43(5):912.[doi:10.3969/j.issn.1001-0505.2013.05.002]
 Zhou Guangdong,Li Aiqun,et al.Simulation of stochastic temperature field for Runyang suspension bridge life-cycle evaluation based on monitoring data[J].Journal of Southeast University (Natural Science Edition),2013,43(3):912.[doi:10.3969/j.issn.1001-0505.2013.05.002]
[9]丁幼亮,王超,王景全,等.高速铁路钢桁拱桥吊杆振动长期监测与分析[J].东南大学学报(自然科学版),2016,46(4):848.[doi:10.3969/j.issn.1001-0505.2016.04.029]
 Ding Youliang,Wang Chao,Wang Jingquan,et al.Long-term monitoring and analysis of hanger vibration on high-speed railway steel truss arch bridge[J].Journal of Southeast University (Natural Science Edition),2016,46(3):848.[doi:10.3969/j.issn.1001-0505.2016.04.029]

备注/Memo

备注/Memo:
收稿日期: 2019-11-05.
作者简介: 廖聿宸(1995—),男,硕士生;宗周红(联系人),男,博士,教授,博士生导师,zongzh@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51678141)、国家重点研发计划资助项目(2017YFC0703405).
引用本文: 廖聿宸,张坤,宗周红,等.基于S型函数的随机子空间模型定阶方法[J].东南大学学报(自然科学版),2020,50(3):440-446. DOI:10.3969/j.issn.1001-0505.2020.03.005.
更新日期/Last Update: 2020-05-20