[1]周正峰,康玉峰,罗君豪,等.基于双线形软化黏聚区模型的混凝土路面损伤开裂及承载力分析[J].东南大学学报(自然科学版),2020,50(3):447-453.[doi:10.3969/j.issn.1001-0505.2020.03.006]
 Zhou Zhengfeng,Kang Yufeng,Luo Junhao,et al.Analysis of damage and bearing capacity of concrete pavement based on double linear softening cohesive zone model[J].Journal of Southeast University (Natural Science Edition),2020,50(3):447-453.[doi:10.3969/j.issn.1001-0505.2020.03.006]
点击复制

基于双线形软化黏聚区模型的混凝土路面损伤开裂及承载力分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第3期
页码:
447-453
栏目:
交通运输工程
出版日期:
2020-05-20

文章信息/Info

Title:
Analysis of damage and bearing capacity of concrete pavement based on double linear softening cohesive zone model
作者:
周正峰12康玉峰12罗君豪12蒲卓桁12游庆龙3
1西南交通大学土木工程学院, 成都 610031; 2西南交通大学道路工程四川省重点实验室, 成都 610031; 3长安大学公路学院, 西安 710064
Author(s):
Zhou Zhengfeng12 Kang Yufeng12 Luo Junhao12 Pu Zhuoheng12 You Qinglong3
1 School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
2 Key Laboratory of Highway Engineering of Sichuan Province, Southwest Jiaotong University, Chengdu 610031, China
3 School of Highway, Chang’an University, Xi’an 710064, China
关键词:
混凝土路面 承载力 损伤开裂 双线形软化黏聚区模型 有限元方法
Keywords:
concrete pavement bearing capacity damage and cracking double linear softening cohesive zone model finite element method
分类号:
U416.217
DOI:
10.3969/j.issn.1001-0505.2020.03.006
摘要:
为探究混凝土塑性软化对混凝土路面损伤及承载力的影响,基于双线形软化黏聚区模型,结合ABAQUS有限元软件,对三点加载混凝土小梁试验全过程进行模拟.比较了单、双线形软化黏聚区模型,计算了应力比为0.15、0.25、0.35的双线形软化黏聚区模型的模拟误差,分析了Winkler地基上混凝土路面板从加载到断裂全过程的承载力和截面应力分布变化.结果表明,采用应力比为0.25的双线形软化黏聚区模型,小梁的加载力-裂纹张开位移曲线模拟结果与试验结果一致,小梁和混凝土板的极限承载力分别出现在底部混凝土发生损伤和开裂阶段,混凝土板极限承载力大小为板底拉应力达到混凝土抗拉强度时的1.75倍,为板底刚开始出现宏观裂缝时的1.09倍.Winkler地基上的混凝土板加载破坏表现出脆性断裂特征.
Abstract:
To study the effect of concrete plastic softening on the damage and bearing capacity of concrete pavement, the whole process of the three-point loading concrete beam test was simulated by the finite element soft ABAQUS based on the double linear softening cohesive zone model. The single and double linear softening cohesive zone models were compared, and the simulation deviations of the double linear softening cohesive zone model with different stress ratios of 0.15, 0.25 and 0.35 were calculated. The bearing capacity and the cross-section stress distribution of the concrete pavement on the Winkler foundation from loading to fracture were analyzed. The results show that using the double linear softening cohesive zone model with the stress ratio of 0.25, the simulation results of the loading force-crack opening curve are in agreement with the test ones. The ultimate bearing capacities of the beam and the concrete slab occur when the concrete at the bottom is in the damage phase and the cracking phase, respectively. The ultimate bearing capacity of the concrete slab is 1.75 times of that when the concrete at the bottom reaches its tensile strength, and 1.09 times of that when the macro-crack appears at the bottom of slab.The loading failure of the concrete slab on the Winkler foundation shows brittle fracture characteristics.

参考文献/References:

[1] 杜修力, 韩亚强, 金浏, 等. 骨料空间分布对混凝土压缩强度及软化曲线影响统计分析[J]. 水利学报, 2015, 46(6): 631-639. DOI:10.13243/j.cnki.slxb.20141393.
Du X L, Han Y Q, Jin L, et al. Statistical investigation on effects of aggregate distribution on concrete compression strength and the descending part of stress-strain curve[J]. Journal of Hydraulic Engineering, 2015, 46(6): 631-639. DOI:10.13243/j.cnki.slxb.20141393. (in Chinese)
[2] Xiao Y J, Chen Z S, Zhou J T, et al. Concrete plastic-damage factor for finite element analysis: Concept, simulation, and experiment[J]. Advances in Mechanical Engineering, 2017, 9(9): 168781401771964. DOI:10.1177/1687814017719642.
[3] Roesler J R, Cervantes V G, Amirkhanian A N. Accelerated performance testing of concrete pavement with short slabs[J]. International Journal of Pavement Engineering, 2012, 13(6): 494-507. DOI:10.1080/10298436.2011.575134.
[4] Nguyen D H, Dao V T N, Lura P. Tensile properties of concrete at very early ages[J]. Construction and Building Materials, 2017, 134: 563-573. DOI:10.1016/j.conbuildmat.2016.12.169.
[5] Wang J Y, Guo J Y. Damage investigation of ultra high performance concrete under direct tensile test using acoustic emission techniques[J]. Cement and Concrete Composites, 2018, 88: 17-28. DOI:10.1016/j.cemconcomp.2018.01.007.
[6] Yang X L, Wang G H, Gao S W, et al. Equation for the degradation of uniaxial compression stress of concrete due to freeze-thaw damage[J]. Advances in Materials Science and Engineering, 2019, 2019: 1-8. DOI:10.1155/2019/8603065.
[7] Mazars J, Hamon F, Grange S. A new 3D damage model for concrete under monotonic, cyclic and dynamic loadings[J]. Materials and Structures, 2015, 48(11): 3779-3793. DOI:10.1617/s11527-014-0439-8.
[8] 钱济成, 周建方. 混凝土的两种损伤模型及其应用[J]. 河海大学学报, 1989, 17(3): 40-47. DOI: 10.3321/j.issn:1000-1980.1989.03.006.
Qian J C, Zhou J F. Two concrete damage models and their application[J]. Journal of Hohai University, 1989, 17(3): 40-47. DOI:10.3321/j.issn:1000-1980.1989.03.006. (in Chinese)
[9] 余天庆, 李兆霞. 损伤本构模型研究方法新进展[J]. 湖北工学院学报, 1995, 10(3): 1-10.
  Yu T Q, Li Z X. Development of reseach methods for damage constitutive models[J]. Journal of Hubei Polytechnic University, 1995, 10(3): 1-10.(in Chinese)
[10] 林皋, 刘军, 胡志强. 混凝土损伤类本构关系研究现状与进展[J]. 大连理工大学学报, 2010, 50(6): 1055-1064.
  Lin G, Liu J, Hu Z Q. Current situation and progress of research on damage constitutive relation of concrete[J]. Journal of Dalian University of Technology, 2010, 50(6): 1055-1064.(in Chinese)
[11] Hillerborg A, Modéer M, Petersson P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J]. Cement and Concrete Research, 1976, 6(6): 773-781. DOI:10.1016/0008-8846(76)90007-7.
[12] Dugdale D S. Yielding of steel sheets containing slits[J]. Journal of the Mechanics and Physics of Solids, 1960, 8(2): 100-104. DOI:10.1016/0022-5096(60)90013-2.
[13] Barenblatt G. The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks[J]. Journal of Applied Mathematics and Mechanics, 1959, 23(3): 622-636. DOI:10.1016/0021-8928(59)90157-1.
[14] Petersson P E. Crack growth and development of fracture zones in plain concrete and similar materials[D]. Lund, Sweden: Lund University, 1981.
[15] 吴智敏, 黄承逵. 大尺寸砼试件的断裂能[J]. 大连理工大学学报, 1996, 36(6): 782-784.
  Wu Z M, Huang C Y. Fracture energy of large size concrete specimens[J]. China Journal of Dalian University of Technology, 1996, 36(6): 782-784.(in Chinese)
[16] Ba?ant Z P. Concrete fracture models: Testing and practice[J]. Engineering Fracture Mechanics, 2002, 69(2): 165-205. DOI:10.1016/s0013-7944(01)00084-4.
[17] Ba?ant Z, Yu Q, Zi G. Choice of standard fracture test for concrete and its statistical evaluation[J]. International Journal of Fracture, 2002, 118(4): 303-337. DOI:10.1023/A:1023399125413.
[18] Park K, Paulino G H, Roesler J R. Determination of the kink point in the bilinear softening model for concrete[J]. Engineering Fracture Mechanics, 2008, 75(13): 3806-3818. DOI:10.1016/j.engfracmech.2008.02.002.
[19] Ha K, Baek H, Park K. Convergence of fracture process zone size in cohesive zone modeling[J]. Applied Mathematical Modelling, 2015, 39(19): 5828-5836. DOI:10.1016/j.apm.2015.03.030.
[20] Yang D, Dong W, Liu X F, et al. Investigation on mode-Ⅰ crack propagation in concrete using bond-based peridynamics with a new damage model[J]. Engineering Fracture Mechanics, 2018, 199: 567-581. DOI:10.1016/j.engfracmech.2018.06.019.
[21] Feng D C, Wu J Y. Phase-field regularized cohesive zone model(CZM)and size effect of concrete[J]. Engineering Fracture Mechanics, 2018, 197: 66-79. DOI:10.1016/j.engfracmech.2018.04.038.
[22] Carloni C, Santandrea M, Baietti G. Influence of the width of the specimen on the fracture response of concrete notched beams[J]. Engineering Fracture Mechanics, 2019, 216: 106465. DOI:10.1016/j.engfracmech.2019.04.039.
[23] 周正峰, 蒲卓桁, 刘超. 黏聚区模型在沥青路面反射裂缝模拟中的应用[J]. 交通运输工程学报, 2018, 18(3): 1-10. DOI:10.19818/j.cnki.1671-1637.2018.03.001.
Zhou Z F, Pu Z H, Liu C. Application of cohesive zone model to simulate reflective crack of asphalt pavement[J]. Journal of Traffic and Transportation Engineering, 2018, 18(3): 1-10. DOI:10.19818/j.cnki.1671-1637.2018.03.001. (in Chinese)
[24] Gaedicke C, Roesler J. Fracture-based method to determine flexural capacity of concrete beams on soil[J]. Road Materials and Pavement Design, 2010, 11(2): 361-385. DOI:10.1080/14680629.2010.9690280.
[25] Gaedicke C, Roesler J, Evangelista F Jr. Three-dimensional cohesive crack model prediction of the flexural capacity of concrete slabs on soil[J]. Engineering Fracture Mechanics, 2012, 94: 1-12. DOI:10.1016/j.engfracmech.2012.04.029.

相似文献/References:

[1]傅中秋,吉伯海,马麟,等.偏心率对钢管轻集料混凝土受压性能的影响[J].东南大学学报(自然科学版),2010,40(3):624.[doi:10.3969/j.issn.1001-0505.2010.03.036]
 Fu Zhongqiu,Ji Bohai,Ma Lin,et al.Impact of eccentricity ratio on behavior of lightweight aggregate concrete filled steel tube columns under eccentricity compression[J].Journal of Southeast University (Natural Science Edition),2010,40(3):624.[doi:10.3969/j.issn.1001-0505.2010.03.036]
[2]刘先明,李爱群,叶继红.带边框砌体剪力墙承载力和变形的计算分析[J].东南大学学报(自然科学版),2001,31(1):62.[doi:10.3969/j.issn.1001-0505.2001.01.014]
 Liu Xianming,Li Aiqun,Ye Jihong.Calculation Analysis of Bearing Capacity and Deformation of Masonry Shearwall with Reinforced Frame[J].Journal of Southeast University (Natural Science Edition),2001,31(3):62.[doi:10.3969/j.issn.1001-0505.2001.01.014]
[3]刘之春,蒋永生,龚维明.大直径扩底桩承载力的沉降变形控制设计法初探[J].东南大学学报(自然科学版),2001,31(4):49.[doi:10.3969/j.issn.1001-0505.2001.04.012]
 Liu Zhichun,Jiang Yongsheng,Gong Weiming.Discussion of the Design Method of Large Diameter Belled Pile’s Bearing Capacity According to Settlement[J].Journal of Southeast University (Natural Science Edition),2001,31(3):49.[doi:10.3969/j.issn.1001-0505.2001.04.012]
[4]黎冰,等.砂土中吸力式沉箱基础的最大承载力计算方法[J].东南大学学报(自然科学版),2012,42(6):1201.[doi:10.3969/j.issn.1001-0505.2012.06.032]
 Li Bing,Gao Yufeng,et al.Calculation method for maximum bearing capacity of suction caisson foundation in sand[J].Journal of Southeast University (Natural Science Edition),2012,42(3):1201.[doi:10.3969/j.issn.1001-0505.2012.06.032]
[5]易耀林,刘松玉.钉形搅拌桩复合地基荷载试验的三维数值模拟[J].东南大学学报(自然科学版),2008,38(5):821.[doi:10.3969/j.issn.1001-0505.2008.05.016]
 Yi Yaolin,Liu Songyu.3D numerical analysis on bearing tests of T-shaped cement-soil deep mixing column composite foundation[J].Journal of Southeast University (Natural Science Edition),2008,38(3):821.[doi:10.3969/j.issn.1001-0505.2008.05.016]
[6]龚维明,戴国亮,张浩文.桩端后压浆技术在特大桥梁桩基中的试验与研究[J].东南大学学报(自然科学版),2007,37(6):1066.[doi:10.3969/j.issn.1001-0505.2007.06.025]
 Gong Weiming,Dai Guoliang,Zhang Haowen.Test and research on pile-end post-grouting piles technology for super-large bridge pile foundations[J].Journal of Southeast University (Natural Science Edition),2007,37(3):1066.[doi:10.3969/j.issn.1001-0505.2007.06.025]
[7]郑刚,刘松玉.对水泥土桩承载力确定的几个问题的分析[J].东南大学学报(自然科学版),2001,31(5):62.[doi:10.3969/j.issn.1001-0505.2001.05.014]
 Zheng Gang,Liu Songyu.Analysis on the Determination of Bearing Capacity of Soil-Cement Mixing Pile Composite Foundation[J].Journal of Southeast University (Natural Science Edition),2001,31(3):62.[doi:10.3969/j.issn.1001-0505.2001.05.014]
[8]陈云飞,许尚贤.油腔式滑动轴承的有限元动力分析[J].东南大学学报(自然科学版),1994,24(4):18.[doi:10.3969/j.issn.1001-0505.1994.04.004]
 Chen Yunfei,Xu Shangxian.Dynamic Analysis of Recessed Hydrostatic Bearing by Finite Element Method[J].Journal of Southeast University (Natural Science Edition),1994,24(3):18.[doi:10.3969/j.issn.1001-0505.1994.04.004]
[9]Bengt B.Broms教授,唐念慈教授.用石灰土柱加固软粘土[J].东南大学学报(自然科学版),1986,16(5):92.[doi:10.3969/j.issn.1001-0505.1986.05.011]
 Bengt B. Broms.Stabilization of Soft Clay with Lime Columns[J].Journal of Southeast University (Natural Science Edition),1986,16(3):92.[doi:10.3969/j.issn.1001-0505.1986.05.011]
[10]唐念慈.渤海近海平台的打桩分析[J].东南大学学报(自然科学版),1980,10(1):48.[doi:10.3969/j.issn.1001-0505.1980.01.004]
 Tang Nian-ci.Pile Driving Analysis of Bohai Offshore Platform[J].Journal of Southeast University (Natural Science Edition),1980,10(3):48.[doi:10.3969/j.issn.1001-0505.1980.01.004]

备注/Memo

备注/Memo:
收稿日期: 2019-11-15.
作者简介: 周正峰(1981—),男,博士,副教授,zhouzf126@126.com.
基金项目: 国家自然科学基金资助项目(51878575)、2018年度首都机场集团公司科技资助项目(XJC[2019]-KY-033).
引用本文: 周正峰,康玉峰,罗君豪,等.基于双线形软化黏聚区模型的混凝土路面损伤开裂及承载力分析[J].东南大学学报(自然科学版),2020,50(3):447-453. DOI:10.3969/j.issn.1001-0505.2020.03.006.
更新日期/Last Update: 2020-05-20