[1]杨乾,杨庆华.折板型竖井湍流耗散及消能机理分析[J].东南大学学报(自然科学版),2020,50(3):471-481.[doi:10.3969/j.issn.1001-0505.2020.03.009]
 Yang Qian,Yang Qinghua.Analysis on turbulent dissipation and energy dissipation mechanism of baffle-drop shaft[J].Journal of Southeast University (Natural Science Edition),2020,50(3):471-481.[doi:10.3969/j.issn.1001-0505.2020.03.009]
点击复制

折板型竖井湍流耗散及消能机理分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第3期
页码:
471-481
栏目:
土木工程
出版日期:
2020-05-20

文章信息/Info

Title:
Analysis on turbulent dissipation and energy dissipation mechanism of baffle-drop shaft
作者:
杨乾杨庆华
西南交通大学土木工程学院, 成都 610031
Author(s):
Yang Qian Yang Qinghua
School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
关键词:
折板型竖井 湍动能 湍动能耗散率 消能率 消能计算模型 消能机理
Keywords:
baffle-drop shaft turbulent kinetic energy turbulent dissipation rate energy dissipation rate energy dissipation calculation model energy dissipation mechanism
分类号:
TU992.1
DOI:
10.3969/j.issn.1001-0505.2020.03.009
摘要:
为了研究泄流过程中折板型竖井的湍流耗散特性及消能机理,对9种不同体型的竖井开展水力模型试验与数值模拟,分析不同流量下竖井内湍动能、湍动能耗散率和水动力荷载分布规律,建立折板消能计算模型,探究竖井消能机理.结果表明:折板间距过密或过疏均不利于竖井的泄流和消能,在设计流量下竖井内的流态为自由跌水流时,对应的最小折板间距为最优结构设计;10°折板倾角可提升竖井的消能效果,并减小折板上水动力荷载;建立的折板消能计算模型可较为准确地计算自由跌水流态下的消能率;竖井消能方式分为入口消能、折板消能和井底消能,不同流量下各种消能方式的能耗占比不同,小流量时以折板消能为主,随着流量的增加,入口消能和井底消能的能耗占比随之增大.
Abstract:
To study the turbulent dissipation characteristics and the energy dissipation mechanism of baffle-drop shafts during drainage, hydraulic model tests and numerical simulations were carried out for nine different structural parameters of shafts to analyze the turbulent kinetic energy, the turbulent dissipation rate and the hydrodynamic load distribution law at different flow rates. The calculation model of the baffle energy dissipation was established, and the energy dissipation mechanism of the shaft was explored. The results show that too dense or too sparse baffle spacing is not conducive to the discharge and energy dissipation. The minimum baffle spacing is the optimal structural design when the flow regime is free-drop flow on the shaft in the design flow. The baffle angle of 10° can improve the energy dissipation effect of the drop shaft and reduce the hydrodynamic load on the baffles. The calculation model of the baffle energy dissipation can accurately predict the energy dissipation rate on the baffles in the free-drop flow. The energy dissipation method for the baffle-drop shaft includes inlet energy dissipation, baffle energy dissipation and shaft bottom energy dissipation. The proportion of each energy dissipation method is different at different flows. The baffle energy dissipation plays a major role in the small flow. The proportions of inlet and shaft bottom energy dissipation increase with the increase of the flow.

参考文献/References:

[1] 刘家宏,王浩,高学睿,等.城市水文学研究综述[J].科学通报,2014,59(36):3581-3590. DOI:10.1360/N972014-00327.
Liu J H, Wang H, Gao X R, et al.Review on urban hydrology[J]. Chinese Science Bulletin, 2014, 59(36): 3581-3590. DOI:10.1360/N972014-00327. (in Chinese)
[2] 王浩,梅超,刘家宏.海绵城市系统构建模式[J].水利学报,2017,48(9):1009-1014, 1022. DOI:10.13243/j.cnki.slxb.20170308.
Wang H, Mei C, Liu J H. Systematic construction pattern of the sponge city [J].Journal of Hydraulic Engineering, 2017, 48(9): 1009-1014, 1022. DOI:10.13243/j.cnki.slxb.20170308. (in Chinese)
[3] 张建云,王银堂,胡庆芳,等.海绵城市建设有关问题讨论[J].水科学进展,2016,27(6):793-799. DOI:10.14042/j.cnki.32.1309.2016.06.001.
Zhang J Y, Wang Y T, Hu Q F, et al.Discussion and views on some issues of the sponage city construction in China [J]. Advances in Water Science, 2016, 27(6): 793-799. DOI:10.14042/j.cnki.32.1309.2016.06.001. (in Chinese)
[4] 刘家宏,夏霖,王浩,等.城市深隧排水系统典型案例分析[J].科学通报,2017,62(27):3269-3276.
  Liu J H, Xia L, Wang H, et al. Typical case analysis of deep tunnel drainage system in urban area [J].Chinese Science Bulletin, 2017, 62(27): 3269-3276.(in Chinese)
[5] 王广华,李文涛,陈贻龙,等.广州市东濠涌深层排水隧道工程前期研究[J].中国给水排水,2016,32(22):7-13.
  Wang G H, Li W T, Chen Y L, et al. Preliminary study on deep tunnel drainage engineering at Donghao greek in Guangzhou [J].China Water & Wastewater, 2016, 32(22): 7-13.(in Chinese)
[6] 张子新,孙杰,朱雁飞,等.深埋排蓄水隧道接缝密封垫防水性能试验研究[J].浙江大学学报(工学版),2018,52(3):431-439. DOI:10.3785/j.issn.1008-973X.2018.03.003.
Zhang Z X, Sun J, Zhu Y F, et al. Experimental study on waterproof performance of joint seal for deeply-buried storage and drainage tunnel [J].Journal of Zhejiang University(Engineering Science), 2018, 52(3): 431-439. DOI:10.3785/j.issn.1008-973X.2018.03.003. (in Chinese)
[7] 刘家宏,夏霖,梅超,等深隧排水系统在城市内涝防治中的作用分析[J].应用基础与工程科学学报,2019,27(2):252-263. DOI:10.16058/j.issn.1005-0930.2019.02.002.
Liu J H, Xia L, Mei C, et al. Effects of deep tunnel drainage system in urban waterlogging prevention [J]. Journal of Basic Science and Engineering, 2019, 27(2): 252-263. DOI:10.16058/j.issn.1005-0930.2019.02.002. (in Chinese)
[8] 杨乾,杨庆华,郑立宁,等.深隧排水折板型竖井泄流消能的试验研究[J/OL].西南交通大学学报.(2019-09-04)[2020-03-16].http://kns.cnki.net/kcms/detail/51.1277.U.20190904.1531.016.html. DOI:10.3969/j.issn.0258-2724.20190324.
Yang Q, Yang Q H, Zheng L N, et al. Experiment on discharge and energy dissipation of the baffle-drop shaft [J/OL].Journal of Southwest Jiaotong University.(2019-09-04)[2020-03-16]. http://kns.cnki.net/kcms/detail/51.1277.U.20190904.1531.016.html. DOI:10.3969/j.issn.0258-2724.20190324. (in Chinese)
[9] Chanson H. An experimental study of Roman dropshaft hydraulics[J].Journal of Hydraulic Research, 2002, 40(1): 3-12. DOI: 10.1080/00221680209499868.
[10] Chanson H. Understanding air-water mass transfer in rectangular dropshafts[J]. Journal of Environmental Engineering and Science, 2004, 3(5): 319-330. DOI: 10.1139/s04-014.
[11] Chanson H. Air entrainment processes in a full-scale rectangular dropshaft at large flows[J]. Journal of Hydraulic Research, 2007, 45(1): 43-53. DOI: 10.1080/00221686.2007.9521742.
[12] Granata F, de Marinis G D, Gargano R, et al. Hydraulics of circular drop manholes[J]. Journal of Irrigation and Drainage Engineering, 2011, 137(2): 102-111. DOI:10.1061/(asce)ir.1943-4774.0000279.
[13] Kumcu S Y, Kokpinar M A. Air-water flow structure in a circular dropshaft[C]//World Environmental and Water Resources Congress 2013. Cincinnati, Ohio, USA, 2013: 1839-1847. DOI:10.1061/9780784412947.180.
[14] Camino G A, Zhu D Z, Rajaratnam N, et al. Use of a stacked drop manhole for energy dissipation: A case study in Edmonton, Alberta[J]. Canadian Journal of Civil Engineering, 2009, 36(6): 1037-1050. DOI:10.1139/L09-036.
[15] Camino G A, Zhu D Z, Rajaratnam N. Hydraulics of stacked drop manholes[J]. Journal of Irrigation and Drainage Engineering, 2011, 137(8): 537-552. DOI: 10.1061/(asce)ir.1943-4774.0000327.
[16] Camino G A, Rajaratnam N, Zhu D Z. Choking conditions inside plunging flow dropshafts[J]. Canadian Journal of Civil Engineering, 2014, 41(7): 624-632. DOI: 10.1139/cjce-2014-0033.
[17] Camino G A, Zhu D Z, Rajaratnam N. Flow observations in tall plunging flow dropshafts[J]. Journal of Hydraulic Engineering, 2015, 141(1): 06014020. DOI: 10.1061/(asce)hy.1943-7900.0000939.
[18] 张文传,王均星,董宗师,等.竖井旋流式溢洪道消能及空化特性[J].中南大学学报(自然科学版),2018,49(12):3011-3019. DOI: 10.11817/j.issn.1672-7207.2018.12.015.
Zhang W C, Wang J X, Dong Z S, et al. Characteristics of energy dissipation and cavitation of vertical swirling spillway [J]. Journal of Central South University(Science and Technology), 2018, 49(12): 3011-3019. DOI:10.11817/j.issn.1672-7207.2018.12.015. (in Chinese)
[19] 南军虎,牛争鸣,张东,等.旋流消能工内空腔旋流的数值模拟[J].四川大学学报(工程科学版),2015,47(1):76-83. DOI: 10.15961/j.jsuese.2015.01.011.
Nan J H, Niu Z M, Zhang D, et al.Numerical simulation of cavity gyrating flow in gyrating discharge tunnel [J]. Journal of Sichuan University(Engineering Science Edition), 2015, 47(1): 76-83. DOI:10.15961/j.jsuese.2015.01.011. (in Chinese)
[20] 焦凤,邓先和.矩形自支撑缩放管换热器强化传热的结构优化[J].化工学报,2013,64(7):2376-2385. DOI: 10.3969/j.issn.0438-1157.2013.07.010.
Jiao F, Deng X H.Structural optimization of converging-diverging tube based on heat transfer enhancement for self-support rectangle heat exchanger [J]. CIESC Journal, 2013, 64(7): 2376-2385. DOI:10.3969/j.issn.0438-1157.2013.07.010. (in Chinese)
[21] Yagci O, Tschiesche U, Kabdasli M S. The role of different forms of natural riparian vegetation on turbulence and kinetic energy characteristics[J]. Advances in Water Resources, 2010, 33(5): 601-614. DOI: 10.1016/j.advwatres.2010.03.008.
[22] 王福军.计算流体动力学分析:CFD软件原理与应用[M].北京:清华大学出版社,2004:116-120.

备注/Memo

备注/Memo:
收稿日期: 2019-10-28.
作者简介: 杨乾(1990—),男,博士生;杨庆华(联系人),男,博士,副教授,qhyang@home.swjtu.edu.cn.
基金项目: 国家自然科学基金资助项目(51478403).
引用本文: 杨乾,杨庆华.折板型竖井湍流耗散及消能机理分析[J].东南大学学报(自然科学版),2020,50(3):471-481. DOI:10.3969/j.issn.1001-0505.2020.03.009.
更新日期/Last Update: 2020-05-20