[1]吴彰钰,余红发,麻海燕,等.C45珊瑚混凝土的冲击压缩性能试验及数值模拟[J].东南大学学报(自然科学版),2020,50(3):488-495.[doi:10.3969/j.issn.1001-0505.2020.03.011]
 Wu Zhangyu,Yu Hongfa,Ma Haiyan Zhang Jinhua,et al.Experiment and numerical simulation on impact compressive properties of C45 coral aggregate concrete[J].Journal of Southeast University (Natural Science Edition),2020,50(3):488-495.[doi:10.3969/j.issn.1001-0505.2020.03.011]
点击复制

C45珊瑚混凝土的冲击压缩性能试验及数值模拟()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第3期
页码:
488-495
栏目:
材料科学与工程
出版日期:
2020-05-20

文章信息/Info

Title:
Experiment and numerical simulation on impact compressive properties of C45 coral aggregate concrete
作者:
吴彰钰余红发1麻海燕1张锦华2岳承军12刘婷1章艳3
1南京航空航天大学民航学院, 南京 211100; 2东南大学土木工程学院, 南京 211189; 3南京工程学院建筑工程学院, 南京 210009
Author(s):
Wu Zhangyu1 Yu Hongfa1 Ma Haiyan1 Zhang Jinhua2 Yue Chengjun12 Liu Ting1 Zhang Yan3
1College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
2School of Civil Engineering, Southeast University, Nanjing 211189, China
3 School of Architecture Engineering, Nanjing Institute of Technology, Nanjing 210009, China
关键词:
珊瑚混凝土 冲击压缩荷载 霍普金森压杆 数值模拟 HJC模型
Keywords:
coral aggregate concrete impact compressive loading Split Hopkinson pressure bar numerical simulation Holmquist-Johnson-concrete(HJC)model
分类号:
TU528
DOI:
10.3969/j.issn.1001-0505.2020.03.011
摘要:
为了研究珊瑚混凝土(CAC)的动态力学性能,采用试验研究和数值模拟相结合的方法对强度等级为C45的CAC冲击压缩性能及破坏特征进行了分析.首先,通过实验得到了CAC的压缩强度、应力-应变曲线和破坏特征;然后,采用HJC模型对其冲击实验进行数值模拟,并将模拟结果与试验结果进行对比,分析HJC模型及其参数的可靠性.结果表明:冲击压缩荷载作用下的CAC呈典型脆性破坏形态,其抗压强度具有明显的应变率效应;可以采用欧洲混凝土委员会推荐的计算模型来分析预测CAC的动态增强因子;动态屈服强度试验值与模拟值的误差(1.76%~7.71%)在允许范围内,说明HJC模型及其模型参数在C45 CAC的冲击力学性能分析方面具有较高的可靠性.
Abstract:
To investigate the dynamic properties of coral aggregate concrete(CAC), the impact compressive properties and the failure patterns of C45 CAC were analyzed by combining experiments with numerical simulation. Firstly, the compressive strength, the stress-strain curve and the failure pattern of C45 CAC were tested. Then, the Holmquist-Johnson-Concrete(HJC)model was used to simulate the impact tests, and the reliability of the HJC model and the model parameters was evaluated by the comparison of the simulation and the experimental results. The results indicate that CAC under impact loading exhibits the typical brittle failure, and the compressive strength of CAC has the obvious strain-rate effect. The dynamic increase factor of CAC can be predicted by using the calculation model proposed by the European Committee for Concrete. The errors between the simulation results and the experimental ones(1.76% to 7.71%)are in the error range, improving the high rationality of the HJC model and the model parameters on the properties analysis of C45 CAC under impact loading.

参考文献/References:

[1] 达波, 余红发, 麻海燕, 等. 南海海域珊瑚混凝土结构的耐久性影响因素[J]. 硅酸盐学报, 2016, 44(2): 253-260.DOI: 10.14062/j.issn.0454-5648.2016.02.11.
Da B, Yu H F, Ma H Y, et al. Factors influencing durability of coral concrete structure in the South China Sea[J].Journal of the Chinese Ceramic Society, 2016, 44(2): 253-260. DOI:10.14062/j.issn.0454-5648.2016.02.11. (in Chinese)
[2] Yu H F, Da B, Ma H Y, et al. Durability of concrete structures in tropical atoll environment[J].Ocean Engineering, 2017, 135:1-10. DOI: 10.1016/j.oceaneng.2017.02.020.
[3] Nutter B E. The use of coral aggregate[J].Journal of American Concrete Institute, 1943, 15(1): 61-65.
[4]Narver D L. Good concrete made with coral and water[J]. Civil Engineering, 1964, 24: 654-858.
[5] Rick A E. Coral concrete at Bikini Atoll[J].Concrete International, 1991, 13(1): 19-24.
[6] 袁银峰. 全珊瑚海水混凝土的配合比设计和基本性能[D]. 南京: 南京航空航天大学,2015.
  Yuan Y F. Mix design and property of coral aggregate concrete [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015.(in Chinese)
[7] 吴彰钰, 余红发, 麻海燕, 等. 新型珊瑚海水混凝土力学性能试验研究[J]. 海洋工程, 2018, 36(3): 59-68. DOI:10.16483/j.issn.1005-9865.2018.03.008.
Wu Z Y, Yu H F, Ma H Y, et al. Study on the mechanical properties of new coral aggregate seawater concrete[J].The Ocean Engineering, 2018, 36(3): 59-68. DOI:10.16483/j.issn.1005-9865.2018.03.008. (in Chinese)
[8] Da B, Yu H F, Ma H Y, et al. Experimental investigation of whole stress-strain curves of coral concrete[J].Construction and Building Materials, 2016, 122: 81-89. DOI: 10.1016/j.conbuildmat.2016.06.064.
[9] Da B, Yu H F, Ma H Y, et al. Research on compression behavior of coral aggregate reinforced concrete columns under large eccentric compression loading[J].Ocean Engineering, 2018, 155:251-260. DOI: 10.1016/j.oceaneng.2018.02.037
[10] 达波, 余红发, 麻海燕, 等. 全珊瑚海水混凝土的表面自由氯离子浓度和表观氯离子扩散系数[J]. 东南大学学报(自然科学版), 2016, 46(5): 1093-1097. DOI: 10.3969/j.issn.1001-0505.2016.05.033.
Da B, Yu H F, Ma H Y, et al. Surface free chloride concentration and apparent chloride diffusion coefficient of coral seawater concrete[J].Journal of Southeast University(Natural Science Edition), 2016, 46(5): 1093-1097. DOI:10.3969/j.issn.1001-0505.2016.05.033. (in Chinese)
[11] Wu Z Y, Yu H F, Ma H Y, et al. Rebar corrosion in coral aggregate concrete: Determination of chloride threshold by LPR[J]. Corrosion Science, 2020, 163: 108238. DOI: 10.1016/j.corsci.2019.108238.
[12] Wu Z Y, Yu H F, Ma H Y, et al. Rebar corrosion behavior of coral aggregate seawater concrete by electrochemical techniques [J].Anti-Corrosion Methods and Materials, 2020, 67(1):59-72. DOI: 10.1108/acmm-05-2019-2128.
[13] 石蕴美. 混凝土高温后冲击压缩性能试验及数值模拟研究[D]. 西安:长安大学, 2017.
  Shi Y M. Experimental and numerical simulation of impact compression of concrete after high temperature[D]. Xi’an: Chang’an University, 2017.(in Chinese).
[14] Abrams D A. Effect of rate of application of load on the compressive strength of concrete[J]. American Society for Testing and Materials Journal, 1917, 17(2): 364-377.
[15] Bischoff P H, Perry S H. Compressive behaviour of concrete at high strain rates[J].Materials and Structures, 1991, 24(6): 425-450. DOI: 10.1007/BF02472016.
[16] Qin F, Hua Z. Three-dimensional numerical modelling of concrete-like materials subjected to dynamic loadings[M]//Advances in Protective Structures Research. London, UK:CRC Press, 2012: 33-64. DOI:10.1201/b12768-3.
[17] 中国建筑材料联合会. GB/T 14685—2011 建设用卵石、碎石[S]. 北京:中国标准出版社, 2011.
[18] American Society of Testing Materials. ASTM D1141-2013 Standard practice for the preparation of substitute ocean water [S].West Conshohocken, PA, USA: ASTM International, 2013.
[19] 中国建筑科学研究院. JGJ51—2002 轻集料混凝土技术规范[S]. 北京:中国建筑工业出版社, 2003.
[20] 吴彰钰, 余红发, 麻海燕, 等. 全珊瑚混凝土中钢筋锈蚀的氯离子阈值研究[J]. 建筑材料学报, 2020(已录用).
  Wu Z Y, Yu H F, Ma H Y, et al. Determination of the chloride threshold value in reinforced coral aggregate seawater concrete[J]. Journal of Building Materials, 2020: to appear.(in Chinese)
[21] Schlangen E, van Mier J G M. Simple lattice model for numerical simulation of fracture of concrete materials and structures [J].Materials and Structures, 1992, 25(9): 534-542. DOI: 10.1007/BF02472449.
[22] 中国建筑科学研究院. GB/T50081—2016 普通混凝土力学性能试验方法标准[S]. 北京:中国建筑工业出版社, 2016.
[23] Ma L J, Li Z, Liu J, et al. Mechanical properties of coral concrete subjected to uniaxial dynamic compression[J].Construction and Building Materials, 2019, 199: 244-255. DOI: 10.1016/j.conbuildmat.2018.12.032.
[24] Pedersen R R, Simone A, Sluys L J. An analysis of dynamic fracture in concrete with a continuum visco-elastic visco-plastic damage model[J]. Engineering Fracture Mechanics, 2008, 75(13): 3782-3805. DOI: 10.1016/j.engfracmech.2008.02.004.
[25] Jones P G, Richart F E. The effect of testing speed on strength and elastic properties of concrete[J]. Proceedings of ASTM, 1936, 36(2): 380-392. DOI: ci.nii.ac.jp/naid/10003190903.
[26] Evans R H. Effect of rate of loading on the mechanical properties of some materials[J]. Journal of the Institution of Civil Engineers, 1942, 18(7): 296-306. DOI: 10.1680/ijoti.1942.13813.
[27] Waststein D. Effect of straining rate on the compressive strength and elastic properties of concrete[J]. ACI Journal Proceedings, 1953, 49(4): 729-744. DOI: 10.14359/11850.
[28] Takeda J, Tachika H. The mechanical properties of several kinds of concrete at compressive, tensile, and flexural tests in high rates of loading[J]. Transactions of the Architectural Institute of Japan, 1962, 77: 1-6. DOI: ci.nii.ac.jp/naid/10004250154.
[29] Lundeen R L. Dynamic and static tests of plain concrete specimens, Report Ⅰ[R]. Vicksburg, Mississippi: US Army Engineers Waterways Experiment Station, 1963.
[30] Cowell W L. Dynamic properties of plain Portland cement concrete, Technical Report No. R447[R]. Port Hueneme, CA, USA: Naval Civil Engineering Lab, 1966.
[31] Atchley B L, Furr H L. Strength and energy absorption capabilities of plain concrete under dynamic and static loadings[J]. ACI Journal Proceedings, 1967, 64(11): 745-756.DOI:10.14359/7604.
[32] Hjorth O. Ein Beitrag zur Frage der Festigkeiten und des Verbundverhaltens von Stahl und Beton bei hohen Beanspruchungsgeschwindigkeiten[D]. Braunschweig:Universitat Carolo-Wilhelmina,1976.
[33] Mahin S A, Bertero V V, Atalay M B, et al. Rate of loading effects on uncracked and repaired reinforced concrete members[R]. Berkeley, CA, USA: Earthquake Engineering Research Center, University of California, 1972.
[34] Hughes B P, Watson A J. Compressive strength and ultimate strain of concrete under impact loading[J]. Magazine of Concrete Research, 1978, 30(105): 189-199. DOI: 10.1680/macr.1978.30.105.189.
[35] Dilger W H, Koch R, Kowalczyk R. Ductility of plain and confined concrete under different strain rates[J]. ACI Journal, 1984, 81(1): 73-81. DOI: concrete.org/icap.1984.10649.
[36] Malvern L E, Ross C A. Dynamic response of concrete and Concrete structures[R]. Gainesville, FL,USA: Defense Technical Information Center, Florida University, 1984.DOI:10.21236/ada139294.
[37] Suaris W, Shah S P. Constitutive model for dynamic loading of concrete[J]. Journal of Structural Engineering, 1985, 111(3): 563-576. DOI: 10.1061/(ASCE)0733-9445(1985)111:3(563).
[38] Ross C A, Tedesco J W. Split-Hopkinson pressure-bar tests on concrete and mortar in tension and compression[J].ACI Materials Journal, 1989, 86(5): 475-481. DOI: 10.14359/2065.
[39] Ross C A, Tedesco J W, Kuennen S T. Effects of strain-rate on concrete strength[J]. ACI Materials Journal, 1995, 92(1): 37-47.
[40] Ross C A, Jerome D M, Tedesco J W, et al. Moisture and strain rate effects on concrete strength[J]. ACI Materials Journal, 1996, 93(3): 293-300. DOI:10.14359/9814.
[41] Bischoff P H, Perry S H. Impact behavior of plain concrete loaded in uniaxial compression[J].Journal of Engineering Mechanics, 1995, 121(6): 685-693. DOI: 10.1061/(asce)0733-9399(1995)121:6(685).
[42] 章艳. 全珊瑚海水混凝土的静、动态力学性能研究[D]. 南京: 南京航空航天大学,2016.
  Zhang Y. Static and dynamic mechanical properties of coral aggregate seawater concrete[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016.(in Chinese)
[43] 岳承军. 珊瑚混凝土高速冲击力学性能的实验研究与数值模拟[D]. 南京: 南京航空航天大学, 2019.
  Yue C J. Research on dynamic and static mechanical properties of coral aggregate seawater concrete[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019.(in Chinese)
[44] CEB. CEB-FIP model code 1990[S]. Trowbridge, UK: Committee Euro-International Du Beton, 1993.
[45] LS-DYNA. Keyword user’s manual [R]. Livermore, CA, USA: Livermore Software Technology Corporation, 2006.
[46] 吴赛, 赵均海, 王娟, 等.基于砼SHPB试验数值分析的HJC模型参数研究[J]. 计算力学学报, 2015, 32(6): 789-795.DOI:10.7511/jslx201506012.
Wu S, Zhao J H, Wang J, et al. Study on parameters of HJC constitutive model based on numerical simulation of concrete SHPB test [J]. Chinese Journal of Computational Mechanics, 2015, 32(6): 789-795.DOI:10.7511/jslx201506012. (in Chinese)

备注/Memo

备注/Memo:
收稿日期: 2019-10-29.
作者简介: 吴彰钰(1994—),男,博士生;余红发(联系人),男,博士,教授,博士生导师,yuhongfa@nuaa.edu.cn.
基金项目: 国家自然科学基金重点资助项目(11832013)、国家自然科学基金面上资助项目(51678304,51878350)、国家自然科学基金青年基金资助项目(51508272).
引用本文: 吴彰钰,余红发,麻海燕,等.C45珊瑚混凝土的冲击压缩性能试验及数值模拟[J].东南大学学报(自然科学版),2020,50(3):488-495. DOI:10.3969/j.issn.1001-0505.2020.03.011.
更新日期/Last Update: 2020-05-20