[1]周海军,熊源泉.曳力模型对水平管高压密相气力输送模拟的影响[J].东南大学学报(自然科学版),2020,50(3):496-506.[doi:10.3969/j.issn.1001-0505.2020.03.012]
 Zhou Haijun,Xiong Yuanquan.Effect of drag models on simulation of dense-phase pneumatic conveying in horizontal pipe under high pressure[J].Journal of Southeast University (Natural Science Edition),2020,50(3):496-506.[doi:10.3969/j.issn.1001-0505.2020.03.012]
点击复制

曳力模型对水平管高压密相气力输送模拟的影响()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第3期
页码:
496-506
栏目:
能源与动力工程
出版日期:
2020-05-20

文章信息/Info

Title:
Effect of drag models on simulation of dense-phase pneumatic conveying in horizontal pipe under high pressure
作者:
周海军熊源泉
东南大学能源热转换及其过程测控教育部重点实验室, 南京 210096
Author(s):
Zhou Haijun Xiong Yuanquan
Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096
关键词:
气力输送 密相 水平管 曳力模型 数值模拟
Keywords:
pneumatic conveying dense phase horizontal pipe drag model numerical simulation
分类号:
TK121
DOI:
10.3969/j.issn.1001-0505.2020.03.012
摘要:
在欧拉-欧拉方法的基础上,引入Dartevelle摩擦应力模型、修正的颗粒动理学理论,采用考虑摩擦应力项的Johnson & Jackson固相壁面边界模型以及Realizable k-ε-kp-εp气固湍流模型对水平管高压密相气力输送进行了数值模拟,并考察了Huilin-Gidaspow曳力模型、Mckeen曳力模型以及构建的三段式曳力模型对数值模拟结果的影响.结果表明:与其他2个曳力模型相比,采用三段式曳力模型所得的模拟结果不仅精准地预测了水平管压降及水平管压降随补充风量的变化规律,其相对误差在-3.7%~+5.2%以内,而且更加合理地反映了水平管高压密相气力输送各流动形态的输送特性.采用三段式曳力模型预测的水平管固相体积浓度分布与ECT图相吻合,从而证实了三段式曳力模型更适用于模拟水平管高压密相气力输送.
Abstract:
Based on the Euler-Euler model, Dartevelle friction stress model,the revised kinetic theory of granular flows, Johnson & Jackson wall boundary conditions with friction stress term and Realizable k-ε-kp-εp turbulent model were introduced to simulate dense phase pneumatic conveying the in horizontal pipe under the high pressure, and the effects of Huilin-Gidaspow drag model, Mckeen drag model and three-zone drag model this study established on the simulation results were explored. The simulation results show that, compared with the other two drag models, the result with three-zone drag model can more accurately predict, the pressure drop of the horizontal pipe and its variation with supplementary gas flow rates the relative error is from -3.7% to +5.2%, reflecting the conveying characteristics of all flow regimes in dense phase pneumatic conveying in the horizontal pipe under high pressure. The predicted solids volume fraction distribution in the cross section of the horizontal pipe also basically agrees with the electrical capacitance tomography(ECT)diagram. Results demonstate that three-zone drag model is more applicable to simulate dense phase pneumatic conveying in the horizontal pipe under high pressure.

参考文献/References:

[1] Zhou H J, Xiong Y Q, Pei Y. Effect of moisture content on dense-phase pneumatic conveying of pulverized lignite under high pressure[J]. Powder Technology, 2016, 287: 355-363. DOI:10.1016/j.powtec.2015.10.026.
[2] 梁财, 赵长遂, 陈晓平, 等. 高压浓相粉煤气力输送[J]. 东南大学学报(自然科学版), 2007, 37(3): 427-431.
  Liang C, Zhao C S, Chen X P, et al. Dense-phase pneumatic conveying of pulverized coal under high pressure[J].Journal of Southeast University(Natural Science Edition), 2007, 37(3): 427-431.(in Chinese)
[3] Lu P, Yang P J,Zheng X W, et al. Pilot-scale experimental study on phase diagrams of pressurized pneumatic conveying with pulverized coal[J]. Energy & Fuels, 2017, 31(9): 10260-10266. DOI:10.1021/acs.energyfuels.7b01752.
[4] Sun S S, Yuan Z L, Peng Z B, et al. Computational investigation of particle flow characteristics in pressurised dense phase pneumatic conveying systems[J]. Powder Technology, 2018, 329: 241-251. DOI:10.1016/j.powtec.2018.01.078.
[5] Du W, Bao X J, Xu J, et al. Computational fluid dynamics(CFD)modeling of spouted bed: Assessment of drag coefficient correlations[J]. Chemical Engineering Science, 2006, 61(5): 1401-1420. DOI:10.1016/j.ces.2005.08.013.
[6] 孙珊珊, 袁竹林. 水平管稠密粉体气力输送流型演变的模拟研究[J]. 建筑热能通风空调, 2019, 38(3): 19-23.
  Sun S S, Yuan Z L. Numerical study on the evolution of flow pattern in horizontal dense powder pneumatic conveying[J]. Building Energy & Environment, 2019, 38(3): 19-23.(in Chinese)
[7] Pu W H, Zhao C S, Xiong Y Q, et al. Numerical simulation on dense phase pneumatic conveying of pulverized coal in horizontal pipe at high pressure[J]. Chemical Engineering Science, 2010, 65(8): 2500-2512. DOI:10.1016/j.ces.2009.12.025.
[8] 胥宇鹏, 熊源泉, 周海军, 等. 水平管段高压超浓相煤粉输送特性的数值模拟[J]. 西安交通大学学报, 2012, 46(5): 38-43.
  Xu Y P, Xiong Y Q, Zhou H J, et al. Numerical simulation on pneumatic conveying of dense phase pulverized coal in horizontal pipe at high pressure[J]. Journal of Xi’an Jiaotong University, 2012, 46(5): 38-43.(in Chinese)
[9] Wang Y, Williams K, Jones M, et al. CFD simulation methodology for gas-solid flow in bypass pneumatic conveying—A review[J]. Applied Thermal Engineering, 2017, 125: 185-208. DOI:10.1016/j.applthermaleng.2017.05.063.
[10] Peng C, Lü M, Wang S N, et al. Effect of fractal gas distributor on the radial distribution of particles in circulating turbulent fluidized bed[J]. Powder Technology, 2018, 326: 443-453. DOI:10.1016/j.powtec.2017.11.011.
[11] Li P, Lan X Y, Xu C M, et al. Drag models for simulating gas-solid flow in the turbulent fluidization of FCC particles[J]. Particuology, 2009, 7(4): 269-277. DOI:10.1016/j.partic.2009.03.010.
[12] 贺春辉, 沈湘林, 胥宇鹏, 等. CO2/N2作输送载气对煤粉高压密相气力输送特性的影响[J]. 中国电机工程学报, 2012, 32(29): 38-44, 14. DOI:10.13334/j.0258-8013.pcsee.2012.29.004.
He C H,Shen X L, Xu Y P, et al. Influences of CO2/N2 as carrier gas on dense phase pneumatic conveying of pulverized coal at high pressure[J]. Proceedings of the CSEE, 2012, 32(29): 38-44, 14. DOI:10.13334/j.0258-8013.pcsee.2012.29.004. (in Chinese)
[13] Makkawi Y, Ocone R. A model for gas-solid flow in a horizontal duct with a smooth merge of rapid-intermediate-dense flows[J]. Chemical Engineering Science, 2006, 61(13): 4271-4281. DOI:10.1016/j.ces.2006.01.017.
[14] Konrad K. Dense-phase pneumatic conveying: A review[J]. Powder Technology, 1986, 49(1): 1-35. DOI:10.1016/0032-5910(86)85001-x.
[15] Schneiderbauer S, Aigner A, Pirker S. A comprehensive frictional-kinetic model for gas-particle flows: Analysis of fluidized and moving bed regimes[J]. Chemical Engineering Science, 2012, 80: 279-292. DOI:10.1016/j.ces.2012.06.041.
[16] Duan Y F, Feng Z G, Michaelides E E, et al. Modified kinetic theory applied to the shear flows of granular materials[J]. Physics of Fluids, 2017, 29(4): 043302. DOI:10.1063/1.4979632.
[17] Savage S B. Analyses of slow high-concentration flows of granular materials[J]. Journal of Fluid Mechanics, 1998, 377: 1-26. DOI:10.1017/s0022112098002936.
[18] Lee C H, Huang Z H, Chiew Y M. A three-dimensional continuum model incorporating static and kinetic effects for granular flows with applications to collapse of a two-dimensional granular column[J]. Physics of Fluids, 2015, 27(11): 113303. DOI:10.1063/1.4935626.
[19] Dartevelle S. Numerical modeling of geophysical granular flows: 1. A comprehensive approach to granular rheologies and geophysical multiphase flows[J]. Geochemistry, Geophysics, Geosystems, 2004, 5(8): 1-28. DOI:10.1029/2003gc000636.
[20] 王振波, 张玉春, 徐春明. 不同曳力模型及颗粒碰撞恢复系数对短接触旋流反应器内气固流场的影响[J]. 化工学报, 2014, 65(6): 2034-2041.
  Wang Z B, Zhang Y C,Xu C M. Effect of drag model and restitution coefficient on gas-solids flow field in quick-contact cyclone reactors[J]. CIESC Journal, 2014, 65(6): 2034-2041.(in Chinese)
[21] Wang S, Liu G D, Lu H L, et al. A cluster structure-dependent drag coefficient model applied to risers[J]. Powder Technology, 2012, 225: 176-189. DOI:10.1016/j.powtec.2012.04.006.
[22] Wang J W. A review of eulerian simulation of geldart A particles in gas-fluidized beds[J]. Industrial & Engineering Chemistry Research, 2009, 48(12): 5567-5577. DOI:10.1021/ie900247t.
[23] Lu H L, Gidaspow D. Hydrodynamics of binary fluidization in a riser: CFD simulation using two granular temperatures[J]. Chemical Engineering Science, 2003, 58(16): 3777-3792. DOI:10.1016/s0009-2509(03)00238-0.
[24] McKeen T, Pugsley T. Simulation and experimental validation of a freely bubbling bed of FCC catalyst[J]. Powder Technology, 2003, 129(1/2/3): 139-152. DOI:10.1016/s0032-5910(02)00294-2.
[25] Wang J W. Continuum theory for dense gas-solid flow: A state-of-the-art review[J]. Chemical Engineering Science, 2020, 215: 115428. DOI:10.1016/j.ces.2019.115428.
[26] 付飞飞, 许传龙, 王式民. 基于多尺度能量比重的气固两相流流型研究[J]. 工程热物理学报, 2018, 39(7): 1493-1497.
  Fu F F, Xu C L, Wang S M. Research of gas-solid two phase flow patterns based on multi-scale energy distribution[J]. Journal of Engineering Thermophysics, 2018, 39(7): 1493-1497.(in Chinese)
[27] 陈程. 气固流态化介尺度结构及非均匀曳力模型研究[D]. 北京: 清华大学, 2014.
  Chen C. Investigations on mesoscale structure in gas-solid fluidization and heterogeneous drag model[D]. Beijing: Tsinghua University, 2014.(in Chinese)
[28] 戴群特, 时凯, 祁海鹰. 基于介尺度特性分析的流态化过程数值方法[J]. 煤炭学报, 2016, 41(10): 2508-2513. DOI:10.13225/j.cnki.jccs.2016.8021.
Dai Q T, Shi K, Qi H Y. Research progress of simulation methods of fluidization process in CFB based onmeso-scale characteristics analysis[J]. Journal of China Coal Society, 2016, 41(10): 2508-2513. DOI:10.13225/j.cnki.jccs.2016.8021. (in Chinese)
[29] Gao J S, Chang J, Lu C X, et al. Experimental and computational studies on flow behavior of gas-solid fluidized bed with disparately sized binary particles[J]. Particuology, 2008, 6(2): 59-71. DOI:10.1016/j.partic.2007.11.003.
[30] Lü S, Li X L, Li G H. Effects of momentum transfer on particle dispersions of dense gas-particle two-phase turbulent flows[J]. Advanced Powder Technology, 2014, 25(1): 274-280. DOI:10.1016/j.apt.2013.04.015.
[31] Klinzing G E, Rizk F, Marcus R, et al. Pneumatic conveying of solids[M]. New York: Springer Netherlands, 2011.
[32] Zhou H J, Xiong Y Q. Conveying mechanisms of dense-phase pneumatic conveying of pulverized lignite in horizontal pipe under high pressure[J]. Powder Technology, 2020, 363: 7-22. DOI:10.1016/j.powtec.2020.01.010.

相似文献/References:

[1]梁财,陈晓平,蒲文灏,等.高压浓相煤粉气力输送差压信号多分辨分析[J].东南大学学报(自然科学版),2006,36(6):967.[doi:10.3969/j.issn.1001-0505.2006.06.019]
 Liang Cai,Chen Xiaoping,Pu Wenhao,et al.Application of multi-resolution analysis to differential pressure in dense-phase pneumatic conveying of pulverized coal under high pressure[J].Journal of Southeast University (Natural Science Edition),2006,36(3):967.[doi:10.3969/j.issn.1001-0505.2006.06.019]
[2]沈骝,梁财,陈晓平,等.气力输送中不同物料的流动特性及倾斜管阻力特性[J].东南大学学报(自然科学版),2014,44(5):975.[doi:10.3969/j.issn.1001-0505.2014.05.018]
 Shen Liu,Liang Cai,Chen Xiaoping,et al.Flow behaviors and resistance properties of inclined pipe for different materials in pneumatic conveying[J].Journal of Southeast University (Natural Science Edition),2014,44(3):975.[doi:10.3969/j.issn.1001-0505.2014.05.018]
[3]蔡海峰,熊源泉,周海军.水平弯管高压密相气力输送数值模拟[J].东南大学学报(自然科学版),2019,49(1):154.[doi:10.3969/j.issn.1001-0505.2019.01.022]
 Cai Haifeng,Xiong Yuanquan,Zhou Haijun.Numerical simulation on dense phase pneumatic conveying under high pressure in horizontal bend[J].Journal of Southeast University (Natural Science Edition),2019,49(3):154.[doi:10.3969/j.issn.1001-0505.2019.01.022]
[4]范春雷,陈晓平,梁财,等.煤粉高压密相气力输送特性[J].东南大学学报(自然科学版),2007,37(3):432.[doi:10.3969/j.issn.1001-0505.2007.03.016]
 Fan Chunlei,Chen Xiaoping,Liang Cai,et al.Investigation on characteristics of pulverized coal dense-phase pneumatic conveying under high pressure[J].Journal of Southeast University (Natural Science Edition),2007,37(3):432.[doi:10.3969/j.issn.1001-0505.2007.03.016]

备注/Memo

备注/Memo:
收稿日期: 2019-10-09.
作者简介: 周海军(1986—),男,博士生;熊源泉(联系人),男,博士,教授,博士生导师,yqxiong@seu.edu.cn.
基金项目: 国家重点基础研究发展计划(973计划)资助项目(2010CB227002)、国家高技术研究发展计划(863计划)资助项目(2011AA05A201).
引用本文: 周海军,熊源泉.曳力模型对水平管高压密相气力输送模拟的影响[J].东南大学学报(自然科学版),2020,50(3):496-506. DOI:10.3969/j.issn.1001-0505.2020.03.012.
更新日期/Last Update: 2020-05-20