[1]徐成威,于燕,谢文霞,等.无重力下油颗粒在纤维表面的形貌特征分析[J].东南大学学报(自然科学版),2020,50(3):516-521.[doi:10.3969/j.issn.1001-0505.2020.03.014]
 Xu Chengwei,Yu Yan,Xie Wenxia,et al.Analysis on shape characteristic of oil droplet on fiber without gravity[J].Journal of Southeast University (Natural Science Edition),2020,50(3):516-521.[doi:10.3969/j.issn.1001-0505.2020.03.014]
点击复制

无重力下油颗粒在纤维表面的形貌特征分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第3期
页码:
516-521
栏目:
环境科学与工程
出版日期:
2020-05-20

文章信息/Info

Title:
Analysis on shape characteristic of oil droplet on fiber without gravity
作者:
徐成威1于燕2谢文霞3张军3杨建刚3
1 扬州大学电气与能源动力工程学院, 扬州 225127; 2 河北师范大学中燃工学院, 石家庄 050024; 3 东南大学能源热转换及其过程测控教育部重点实验室, 南京 210096
Author(s):
Xu Chengwei1 Yu Yan2 Xie Wenxia3 Zhang Jun3 Yang Jiangang3
1 College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225127, China
2 College of Engineering, Hebei Normal University, Shijiazhuang 050024, China
3 Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
关键词:
数学模型 液滴形貌 梭状 蛤壳状 几何特征
Keywords:
mathematical model droplet shape barrel clamshell geometric characteristics
分类号:
X513
DOI:
10.3969/j.issn.1001-0505.2020.03.014
摘要:
考虑到液滴在纤维上的附着形态是滤网运行压降的重要影响因素,为探究油颗粒在纤维上的附着形貌,采用数学模型和数值模拟方法,对液滴附着形貌的几何特征参数进行预测计算.基于平面弯曲思路提出了蛤壳状数学模型,并采用有限元软件对蛤壳状数学模型和现有的梭状数学模型的精度进行验证.通过有限元软件和数学模型计算获得蛤壳状和梭状2种附着形貌的分界以及无量纲液滴体积和接触角对附着形貌几何特征的影响.结果表明,随着接触角的增加,液滴在一定直径的纤维上形成梭状所需的体积呈指数增加;在接触角θ>10°和无量纲液滴体积不大于3时,蛤壳状数学模型的计算误差小于10%;接触角减小时润湿长度和自由表面增加,纤维和油颗粒的碰撞和接触几率增加;无量纲体积越小的液滴演变成液桥或液膜的几率越小.
Abstract:
Considering that the adhesion shape of liquid droplets on the fiber is an important factor to affect the operating pressure drop of the filter, to explore the adhesion shape of oil droplets on the fiber, the geometrical characteristic parameters of the droplet adhesion shape were predicted and calculated by a mathematical model and numerical simulation. A clamshell mathematical model based on plane bending was proposed. The finite element software was used to verify the accuracy of the clamshell mathematical model and the existing barrel mathematical model. The boundary of clamshell and barrel adhesion shapes and the influences of dimensionless droplet volume and contact angle on the geometric characteristics of adhesion shape were obtained by the finite element software and the mathematical model. The results show that as the contact angle increases, the volume required for the barrel shape forming by the droplet on a certain diameter fiber increases exponentially. When the contact angle θ>10° and the dimensionless droplet volume is not greater than 3, the computational error of the clamshell mathematical model is less than 10%. When the contact angle decreases, the wetting length and the free surface area increase, and the chances of collision and contact between fibers and oil droplets increase. The smaller the dimensionless droplet, the less probability that the droplet is to evolve into liquid bridge or film.

参考文献/References:

[1] Zhang J, Shao Y, Long Z W. Physicochemical characterization of oily particles emitted from different machining processes[J]. Journal of Aerosol Science, 2016, 96: 1-13. DOI:10.1016/j.jaerosci.2016.02.009.
[2] He L Y, Hu M, Huang X F, et al. Measurement of emissions of fine particulate organic matter from Chinese cooking[J]. Atmospheric Environment, 2004, 38(38): 6557-6564. DOI:10.1016/j.atmosenv.2004.08.034.
[3] Contal P, Simao J, Thomas D, et al. Clogging of fibre filters by submicron droplets. Phenomena and influence of operating conditions[J]. Journal of Aerosol Science, 2004, 35(2): 263-278. DOI:10.1016/j.jaerosci.2003.07.003.
[4] Frising T, Thomas D, Bémer D, et al. Clogging of fibrous filters by liquid aerosol particles: Experimental and phenomenological modelling study[J]. Chemical Engineering Science, 2005, 60(10): 2751-2762. DOI:10.1016/j.ces.2004.12.026.
[5] Charvet A, Gonthier Y, Gonze E, et al. Experimental and modelled efficiencies during the filtration of a liquid aerosol with a fibrous medium[J]. Chemical Engineering Science, 2010, 65(5): 1875-1886. DOI:10.1016/j.ces.2009.11.037.
[6] Mead-Hunter R, King A J C, Mullins B J. Aerosol-mist coalescing filters—A review[J]. Separation and Purification Technology, 2014, 133: 484-506. DOI:10.1016/j.seppur.2014.06.057.
[7] Carroll B. The accurate measurement of contact angle, phase contact areas, drop volume, and Laplace excess pressure in drop-on-fiber systems[J]. Journal of Colloid and Interface Science, 1976, 57(3): 488-495. DOI:10.1016/0021-9797(76)90227-7.
[8] McHale G, Newton M I, Carroll B J. The shape and stability of small liquid drops on fibers[J]. Oil and Gas Science and Technology, 2001, 56(1):47-54. DOI:10.2516/ogst:2001006.
[9] McHale G, Newton M I. Global geometry and the equilibrium shapes of liquid drops on fibers[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 206(1/2/3): 79-86. DOI:10.1016/s0927-7757(02)00081-x.
[10] Lu Z P, Ng T W, Yu Y. Fast modeling of clam-shell drop morphologies on cylindrical surfaces[J]. International Journal of Heat and Mass Transfer, 2016, 93: 1132-1136. DOI:10.1016/j.ijheatmasstransfer.2015.10.064.
[11] Amrei M M, Davoudi M, Chase G G, et al. Effects of roughness on droplet apparent contact angles on a fiber[J]. Separation and Purification Technology, 2017, 180: 107-113. DOI:10.1016/j.seppur.2017.02.049.
[12] Chou T H, Hong S J, Liang Y E, et al. Equilibrium phase diagram of drop-on-fiber: Coexistent states and gravity effect[J]. Langmuir, 2011, 27(7): 3685-3692. DOI:10.1021/la2000969.
[13] Liang Y E, Tsao H K, Sheng Y J. Drops on hydrophilic conical fibers: Gravity effect and coexistent states[J]. Langmuir, 2015, 31(5): 1704-1710. DOI:10.1021/la504552d.
[14] McHale G, K�E4;b N A, Newton M I, et al. Wetting of a high-energy fiber surface[J]. Journal of Colloid and Interface Science, 1997, 186(2): 453-461. DOI:10.1006/jcis.1996.4665.
[15] Santos M J, White J A. Theory and simulation of angular hysteresis on planar surfaces[J]. Langmuir, 2011, 27(24): 14868-14875. DOI:10.1021/la202771u.
[16] Li P, Wang C Y, Zhang Y Y, et al. Air filtration in the free molecular flow regime: A review of high-efficiency particulate air filters based on carbon nanotubes[J]. Small, 2014, 10(22): 4543-4561. DOI:10.1002/smll.201401553.

相似文献/References:

[1]沈建新,张运海,廖文和.基于复曲面的准分子激光屈光矫正计算模型[J].东南大学学报(自然科学版),2006,36(4):531.[doi:10.3969/j.issn.1001-0505.2006.04.008]
 Shen Jianxin,Zhang Yunhai,Liao Wenhe.Mathematical model based corneal toric surface for excimer laser refractive surgery[J].Journal of Southeast University (Natural Science Edition),2006,36(3):531.[doi:10.3969/j.issn.1001-0505.2006.04.008]
[2]李宝云,李瑞林.盒式录音机机芯走带系统数学模型的研究[J].东南大学学报(自然科学版),1986,16(3):43.[doi:10.3969/j.issn.1001-0505.1986.03.005]
 Li Baoyun Li Ruilin.A Study of Mathematical Model for Cassette Recorder Play System[J].Journal of Southeast University (Natural Science Edition),1986,16(3):43.[doi:10.3969/j.issn.1001-0505.1986.03.005]

备注/Memo

备注/Memo:
收稿日期: 2019-10-31.
作者简介: 徐成威(1987—),男,博士,讲师,xcwwfl1227@163.com.
基金项目: 国家自然科学基金资助项目(51576043).
引用本文: 徐成威,于燕,谢文霞,等.无重力下油颗粒在纤维表面的形貌特征分析[J].东南大学学报(自然科学版),2020,50(3):516-521. DOI:10.3969/j.issn.1001-0505.2020.03.014.
更新日期/Last Update: 2020-05-20