[1]程滕,杨林军,孙稚权.湿法脱硫系统对脱硝产生逃逸氨的脱除特性[J].东南大学学报(自然科学版),2020,50(3):530-536.[doi:10.3969/j.issn.1001-0505.2020.03.016]
 Cheng Teng,Yang Linjun,Sun Zhiquan.Removal properties of NH3 slip from selective catalytic reduction during wet flue gas desulfurization process[J].Journal of Southeast University (Natural Science Edition),2020,50(3):530-536.[doi:10.3969/j.issn.1001-0505.2020.03.016]
点击复制

湿法脱硫系统对脱硝产生逃逸氨的脱除特性()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第3期
页码:
530-536
栏目:
环境科学与工程
出版日期:
2020-05-20

文章信息/Info

Title:
Removal properties of NH3 slip from selective catalytic reduction during wet flue gas desulfurization process
作者:
程滕1杨林军1孙稚权2
1东南大学能源热转换及过程测控教育部重点实验室, 南京 210096; 2酒泉卫星发射中心, 酒泉 732750
Author(s):
Cheng Teng1 Yang Linjun1 Sun Zhiquan2
1Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
2Jiuquan Satelite Launch Center, Lanzhou 732750, China
关键词:
选择性催化还原脱硝 石灰石-石膏法脱硫 硫酸铵盐 逃逸氨 脱除特性
Keywords:
selective catalytic reduction(SCR) wet flue gas desulfurization(WFGD) ammonium sulfate ammonia slip removal property
分类号:
X51
DOI:
10.3969/j.issn.1001-0505.2020.03.016
摘要:
利用自行搭建的模拟选择性催化还原(SCR)脱硝烟气发生系统和模拟石灰石-石膏湿法烟气脱硫(WFGD)系统的组合试验平台,针对湿法烟气脱硫系统对脱硝过程产生的硫酸铵盐气溶胶和逃逸氨的脱除机制展开研究,并考察了脱硫工艺参数对脱除效果的影响.结果表明,脱硫浆液的洗涤作用对逃逸氨的脱除效果较好,但对硫酸铵盐气溶胶的脱除效果不佳,同时热烟气对含铵脱硫浆液的夹带和蒸发作用会生成新的亚微米级铵盐气溶胶.湿法脱硫系统从整体上减少了NH+4和NH3的总排放量,但当脱硫浆液中的NH+4累积到了足够高的质量浓度时,WFGD系统会促进NH3向NH+4的转化,并有可能增加一次铵盐气溶胶的排放.脱硫系统对逃逸氨的脱除效率主要受到脱硫浆液pH值和浆液中NH+4质量浓度的影响;改变脱硫系统操作参数(如降低液气比、浆液浓度和入口烟气温度等)有助于减少铵盐气溶胶的排放.
Abstract:
The removal properties of ammonium sulfate aerosols and ammonia slip from selective catalytic reduction(SCR)denitration during the wet flue gas desulfurization(WFGD)process, as well as the effect on desulfurization parameters, were investigated in an experimental system equipped with a simulated SCR flue gas generation system and a limestone-based WFGD system. The results show that the ammonium sulfate aerosols and ammonia slip in flue gas from SCR can be partly removed by the slurry scrubbing while the entrainment and the evaporation of the desulfurization slurry with accumulated NH+4 will generate new ammonium-containing particles and gaseous ammonia. The WFGD system can reduce the total emission of NH+4 and NH3, however, when the accumulated NH+4 in the desulfurization slurry is high enough, the WFGD system will promote the conversion of NH3 to NH+4 and increase the additional emission of primary NH+4 aerosols. The removal efficiency of the ammonia slip is mainly affected by pH value of the desulfurization slurry and NH+4 concentration in slurry; with the decline of the liquid/gas ratio and flue gas temperature, the removal efficiency of ammonia sulfate aerosols increases, and the NH+4 from entrainment and evaporation of desulfurization slurry decreases.

参考文献/References:

[1] 朱宝山. 燃煤锅炉大气污染物净化技术手册 [M]. 北京: 中国电力出版社, 2016: 23-27.
[2] Liu F, Zhang Q,van der A R J, et al. Recent reduction in NOx emissions over China: Synthesis of satellite observations and emission inventories[J]. Environmental Research Letters, 2016, 11(11): 114002. DOI:10.1088/1748-9326/11/11/114002.
[3] Liu X W, Xu Y S, Zeng X P, et al. Field measurements on the emission and removal of PM2.5from coal-fired power stations: 1. Case study for a 1000 MW ultrasupercritical utility boiler[J]. Energy & Fuels, 2016, 30(8): 6547-6554. DOI:10.1021/acs.energyfuels.6b00423.
[4] Xu Y S, Liu X W, Cui J, et al. Field measurements on the emission and removal of PM2.5 from coal-fired power stations: 4. PM removal performance of wet electrostatic precipitators[J]. Energy & Fuels, 2016, 30(9): 7465-7473. DOI:10.1021/acs.energyfuels.6b00426.
[5] Pan D P, Wu H, Yang L J. Investigation on the relationship between the fine particle emission and crystallization characteristics of gypsum during wet flue gas desulfurization process[J]. Journal of Environmental Sciences, 2017, 55: 303-310. DOI:10.1016/j.jes.2016.08.020.
[6] 潘丹萍, 郭彦鹏, 黄荣廷, 等. 石灰石-石膏法烟气脱硫过程中细颗粒物形成特性[J]. 化工学报, 2015, 66(11): 4618-4625. DOI:10.11949/j.issn.0438-1157.20150459.
Pan D P, Guo Y P, Huang R T, et al. Formation of fine particles in flue gas desulphurization process using limestone-gypsum[J]. CIESC Journal, 2015, 66(11): 4618-4625. DOI:10.11949/j.issn.0438-1157.20150459. (in Chinese)
[7] Topsoe N Y, Topsoe H, Dumesic J A. Vanadia/titania catalysts for selective catalytic reduction(SCR)of nitric-oxide by ammonia: I. Combined temperature-programmed in situ FTIR and on-line mass-spectroscopy studies[J]. Journal of Catalysis, 1995, 151(1): 226-240. DOI:10.1006/jcat.1995.1024.
[8] Busca G, Lietti L, Ramis G, et al. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review[J]. Applied Catalysis B: Environmental, 1998, 18(1/2): 1-36. DOI:10.1016/S0926-3373(98)00040-X.
[9] Kamata H, Ohara H, Takahashi K, et al. SO2 oxidation over the V2O5/TiO2 SCR catalyst[J]. Catalysis Letters, 2001, 73(1): 79-83. DOI:10.1023/A:1009065030750.
[10] 李振. 典型燃煤电厂烟气系统中PM2.5变化规律及排放特征研究[D]. 北京: 清华大学, 2017.
  Li Z. Characterization of PM2.5 emissions from conventional coal fired power plants during flue gas cleaning processes[D]. Beijing: Tsinghua University, 2017.(in Chinese)
[11] 马子轸, 李振, 蒋靖坤, 等. 燃煤电厂产生和排放的 PM2.5中水溶性离子特征[J]. 环境科学, 2015, 36(7): 2361-2366. DOI:10.13227/j.hjkx.2015.07.005.
Ma Z Z, Li Z, Jiang J K, et al. Characteristics of water-soluble inorganic ions in PM2.5 emitted from coal-fired power plants[J]. Environmental Science, 2015, 36(7): 2361-2366. DOI:10.13227/j.hjkx.2015.07.005. (in Chinese)
[12] Cheng T, Zheng C Q, Yang L J, et al. Effect of selective catalytic reduction denitrification on fine particulate matter emission characteristics[J]. Fuel, 2019, 238: 18-25. DOI:10.1016/j.fuel.2018.10.086.
[13] Pan Y P, Tian S L, Liu D W, et al. Fossil fuel combustion-related emissions dominate atmospheric ammonia sources during severe haze episodes: Evidence from 15N-stable isotope in size-resolved aerosol ammonium[J]. Environmental Science & Technology, 2016, 50(15): 8049-8056. DOI:10.1021/acs.est.6b00634.
[14] Li Z, Jiang J K, Ma Z Z, et al. Influence of flue gas desulfurization(FGD)installations on emission characteristics of PM2.5 from coal-fired power plants equipped with selective catalytic reduction(SCR)[J]. Environmental Pollution, 2017, 230: 655-662. DOI:10.1016/j.envpol.2017.06.103.
[15] Tian S L, Pan Y P, Wang Y S. Size-resolved source apportionment of particulate matter in urban Beijing during haze and non-haze episodes[J]. Atmospheric Chemistry and Physics, 2016, 16(1): 1-19. DOI:10.5194/acp-16-1-2016.
[16] 段雷, 马子轸, 李振, 等. 燃煤电厂排放细颗粒物的水溶性无机离子特征综述[J]. 环境科学, 2015, 36(3): 1117-1122. DOI:10.13227/j.hjkx.2015.03.047.
Duan L, Ma Z Z, Li Z, et al. Characteristics of water soluble inorganic ions in fine particles emitted from coal-fired power plants[J]. Environmental Science, 2015, 36(3): 1117-1122. DOI:10.13227/j.hjkx.2015.03.047. (in Chinese)
[17] Lim K S, Lee S H, Park H S. Prediction for particle removal efficiency of a reverse jet scrubber[J]. Journal of Aerosol Science, 2006, 37(12): 1826-1839. DOI:10.1016/j.jaerosci.2006.06.010.
[18] 潘丹萍. 石灰石-石膏湿法脱硫过程中细颗粒物转化机制研究[D]. 南京: 东南大学, 2017.
  Pan D P. Study on fine particle transfer mechanism during the limestone-gypsum desulfurization process[D]. Nanjing: Southeast University, 2017.(in Chinese)
[19] 叶春松, 操容, 高燎, 等. 烟气脱硝逃逸氨的迁移转化及其对脱硫废水处理的影响[J]. 热力发电, 2018, 47(10): 73-77. DOI:10.19666/j.rlfd.201807126.
Ye C S, Cao R, Gao L, et al. Migration and conversion of ammonia escaped from flue gas denitrator and its effect on treatment of desulfurization wastewater[J]. Thermal Power Generation, 2018, 47(10): 73-77. DOI:10.19666/j.rlfd.201807126. (in Chinese)

备注/Memo

备注/Memo:
收稿日期: 2019-10-30.
作者简介: 程滕(1991—),女,博士生;杨林军(联系人),男,博士,教授,博士生导师, ylj@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51576039).
引用本文: 程滕,杨林军,孙稚权.湿法脱硫系统对脱硝产生逃逸氨的脱除特性[J].东南大学学报(自然科学版),2020,50(3):530-536. DOI:10.3969/j.issn.1001-0505.2020.03.016.
更新日期/Last Update: 2020-05-20