[1]东方,吴媚,朱文捷,等.物联网环境下面向能耗优化的无人机飞行规划[J].东南大学学报(自然科学版),2020,50(3):555-562.[doi:10.3969/j.issn.1001-0505.2020.03.019]
 Dong Fang,Wu Mei,Zhu Wenjie,et al.Energy-efficient flight planning for UAV in IoT environment[J].Journal of Southeast University (Natural Science Edition),2020,50(3):555-562.[doi:10.3969/j.issn.1001-0505.2020.03.019]
点击复制

物联网环境下面向能耗优化的无人机飞行规划()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第3期
页码:
555-562
栏目:
计算机科学与工程
出版日期:
2020-05-20

文章信息/Info

Title:
Energy-efficient flight planning for UAV in IoT environment
作者:
东方吴媚朱文捷李修阳
东南大学计算机科学与工程学院, 南京 211189
Author(s):
Dong Fang Wu Mei Zhu Wenjie Li Xiuyang
School of Computer Science and Engineering, Southeast University, Nanjing 211189, China
关键词:
物联网 无人机 能耗模型 飞行规划
Keywords:
Internet of Things(IoT) unmanned aerials vehicle(UAV) energy consumption model flight planning
分类号:
TP393
DOI:
10.3969/j.issn.1001-0505.2020.03.019
摘要:
为了优化物联网环境下数据采集时无人机飞行能耗,针对现有研究中由于无人机能耗影响因素考虑不全面导致能耗模型不精确的问题,设计了面向能耗优化的无人机飞行规划算法.首先通过构造真实无人机环境并进行能耗实验分析,建立无人机不同飞行状态下的精确能耗模型.其次,根据传感器的分布情况和所建立的能耗模型,提出无人机飞行规划算法,将转弯角度、飞行速度作为影响路径代价的2个重要因素,为无人机确定飞行路径与飞行速度,以使无人机飞行能耗最小化.实验结果表明,无人机的转弯角度和飞行速度对能耗有较大的影响,其中转角能耗平均占比约为10%.所提飞行规划算法能够在同时考虑这2个因素的情况下获得最优的飞行能耗,较已有算法能耗降低8%.
Abstract:
To optimize the flight energy consumption of unmanned aerials vehicle(UAV)during data collection in Internet of Things(IoT)environment, aiming at the problem that the existing energy consumption model is not accurate due to the incomplete consideration of the influencing factors of the UAV energy consumption, an energy-efficient flight planning algorithm for the UAV was designed. First, by constructing a real UAV environment and conducting energy consumption on the experimental analysis, an accurate energy consumption model in different flight states for the UAV was established. Secondly, according to the distribution of sensors and the established energy consumption model, the flight path planning algorithm for the UAV was proposed. The turning angle and the flight speed were taken as two important factors affecting the path cost to determine the flight path and flight speed of UAV, so as to minimize the flight energy consumption of UAV. The experimental results show that the turning angle and the flight speed of the UAV have a significant impact on the energy consumption, in which the turning angle energy consumption accounts for about 10% on average of all flight energy consumption. Meanwhile, the flight planning algorithm can obtain the optimal flight energy consumption by considering these two factors, and the energy consumption is reduced by 8% compared with existing algorithms.

参考文献/References:

[1] Hong S H, Sun J N, Yu M M, et al. Collaborative coexistence management scheme for industrial wireless sensor networks[J].IEEE Access, 2019, 7: 1617-1626. DOI:10.1109/access.2018.2886365.
[2] Kumar M, Tripathi R, Tiwari S. Real-time reliable routing for industrial wireless sensor networks[J]. Ad Hoc & Sensor Wireless Networks, 2019, 43(3-4): 239-259.
[3] Gubbi J, Buyya R, Marusic S, et al. Internet of Things(IoT):A vision, architectural elements, and future directions[J]. Future Generation Computer Systems, 2013, 29(7): 1645-1660. DOI:10.1016/j.future.2013.01.010.
[4] Okcu H, Soyturk M. Distributed clustering approach for UAV integrated wireless sensor networks[J].International Journal of Ad Hoc and Ubiquitous Computing, 2014, 15(1/2/3): 106-120. DOI:10.1504/ijahuc.2014.059912.
[5] Dang P, Lewis F L, Popa D O.Dynamic localization of air-ground wireless sensor networks[M]//Advances in Unmanned Aerial Vehicles. Dordrecht: Springer Netherlands, 2007: 431-453. DOI:10.1007/978-1-4020-6114-1_14.
[6] Elfes A, Siqueira Bueno S, Bergerman M, et al. A semi-autonomous robotic airship for environmental monitoring missions[C]//Proceedings 1998 IEEE International Conference on Robotics and Automation. Leuven, Belgium, 1998, 4: 3449-3455. DOI:10.1109/robot.1998.680971.
[7] Mozaffari M, Saad W, Bennis M, et al. Mobile unmanned aerial vehicles(UAVs)for energy-efficient Internet of Things communications[J].IEEE Transactions on Wireless Communications, 2017, 16(11): 7574-7589. DOI:10.1109/twc.2017.2751045.
[8] Ahmed S, Mohamed A, Harras K, et al. Energy efficient path planning techniques for UAV-based systems with space discretization[C]//2016 IEEE Wireless Communications and Networking Conference. Doha, Qatar, 2016: 1-6. DOI:10.1109/wcnc.2016.7565126.
[9] Morbidi F, Cano R, Lara D. Minimum-energy path generation for a quadrotor UAV[C]//2016 IEEE International Conference on Robotics and Automation(ICRA). Sweden, 2016: 1492-1498. DOI:10.1109/icra.2016.7487285.
[10] Bezzo N, Mohta K, Nowzari C, et al. Online planning for energy-efficient and disturbance-aware UAV operations[C]//2016 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS). Daejeon, South Korea, 2016: 5027-5033. DOI:10.1109/iros.2016.7759738.
[11] Zeng Y, Xu J, Zhang R. Energy minimization for wireless communication with rotary-wing UAV[J].IEEE Transactions on Wireless Communications, 2019, 18(4): 2329-2345. DOI:10.1109/twc.2019.2902559.
[12] Modares J, Ghanei F, Mastronarde N, et al. UB-ANC planner: Energy efficient coverage path planning with multiple drones[C]//2017 IEEE International Conference on Robotics and Automation(ICRA). Singapore, 2017: 6182-6189. DOI:10.1109/icra.2017.7989732.
[13] Wang C L, Ma F, Yan J H, et al. Efficient aerial data collection with UAV in large-scale wireless sensor networks[J].International Journal of Distributed Sensor Networks, 2015, 11(11): 286080. DOI:10.1155/2015/286080.
[14] Ho D T, Gr�F8;tli E I, Sujit P B, et al. Optimization of wireless sensor network and UAV data acquisition[J].Journal of Intelligent & Robotic Systems, 2015, 78(1): 159-179. DOI:10.1007/s10846-015-0175-5.
[15] Martinez-de Dios J R, Lferd K, de San Bernabé A, et al. Cooperation between UAS and wireless sensor networks for efficient data collection in large environments[J].Journal of Intelligent & Robotic Systems, 2013, 70(1/2/3/4):491-508. DOI:10.1007/s10846-012-9733-2.
[16] Bouzid Y, Bestaoui Y, Siguerdidjane H. Quadrotor-UAV optimal coverage path planning in cluttered environment with a limited onboard energy[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS). Vancouver, Canada, 2017: 979-984. DOI:10.1109/iros.2017.8202264.
[17] Yang Q, Yoo S J. Optimal UAV path planning:Sensing data acquisition over IoT sensor networks using multi-objective bio-inspired algorithms[J]. IEEE Access, 2018, 6: 13671-13684. DOI:10.1109/access.2018.2812896.
[18] Franco C D, Buttazzo G. Energy-aware coverage path planning of UAVs[C]//2015 IEEE International Conference on Autonomous Robot Systems and Competitions. Vila Real, Portugal, 2015: 111-117. DOI:10.1109/icarsc.2015.17.
[19] Dong M X, Ota K, Lin M, et al. UAV-assisted data gathering in wireless sensor networks[J].The Journal of Supercomputing, 2014, 70(3): 1142-1155. DOI:10.1007/s11227-014-1161-6.
[20] Lin S, Kernighan B W. An effective heuristic algorithm for the traveling-salesman problem[J].Operations Research, 1973, 21(2): 498-516. DOI:10.1287/opre.21.2.498.

相似文献/References:

[1]王桐,赵春晖,焉晓贞.基于PML及Hedge的物联网异构信息集成处理模型[J].东南大学学报(自然科学版),2011,41(2):301.[doi:10.3969/j.issn.1001-0505.2011.02.017]
 Wang Tong,Zhao Chunhui,Yan Xiaozhen.Hetrogeneous information integrations from internet of things based on PML and Hedge automata[J].Journal of Southeast University (Natural Science Edition),2011,41(3):301.[doi:10.3969/j.issn.1001-0505.2011.02.017]
[2]彭博,蔡晓禹,张有节,等.基于对称帧差和分块背景建模的无人机视频车辆自动检测[J].东南大学学报(自然科学版),2017,47(4):685.[doi:10.3969/j.issn.1001-0505.2017.04.010]
 Peng Bo,Cai Xiaoyu,Zhang Youjie,et al.Automatic vehicle detection from UAV videos based on symmetrical frame difference and background block modeling[J].Journal of Southeast University (Natural Science Edition),2017,47(3):685.[doi:10.3969/j.issn.1001-0505.2017.04.010]

备注/Memo

备注/Memo:
收稿日期: 2019-11-20.
作者简介: 东方(1982—), 男, 博士, 教授, 博士生导师, fdong@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(61872079).
引用本文: 东方,吴媚,朱文捷,等.物联网环境下面向能耗优化的无人机飞行规划[J].东南大学学报(自然科学版),2020,50(3):555-562. DOI:10.3969/j.issn.1001-0505.2020.03.019.
更新日期/Last Update: 2020-05-20