[1]栾鑫,程琳,李梦莹.考虑成本约束和可靠性的检测器优化布设[J].东南大学学报(自然科学版),2020,50(3):580-585.[doi:10.3969/j.issn.1001-0505.2020.03.022]
 Luan Xin,Cheng Lin,Li Mengying.Optimization of sensor location considering cost constraint and reliability[J].Journal of Southeast University (Natural Science Edition),2020,50(3):580-585.[doi:10.3969/j.issn.1001-0505.2020.03.022]
点击复制

考虑成本约束和可靠性的检测器优化布设()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第3期
页码:
580-585
栏目:
交通运输工程
出版日期:
2020-05-20

文章信息/Info

Title:
Optimization of sensor location considering cost constraint and reliability
作者:
栾鑫12程琳1李梦莹3
1 东南大学交通学院, 南京 211189; 2 Department of City and Regional Planning, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; 3 济南轨道交通集团第一运营有限公司, 济南 250306
Author(s):
Luan Xin12 Cheng Lin1 Li Mengying3
1School of Transportation, Southeast University, Nanjing 211189, China
2Department of City and Regional Planning, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
3Jinan Rail Transit Group First Operation Company Limited, Jinan 250306, China
关键词:
路网检测器布局 多目标优化模型 整数规划问题 全路段流量估计 误差传播与增殖
Keywords:
network sensor layout multi-objective optimization model integer programming problem complete link flow inference error propagation and proliferation
分类号:
U491.1
DOI:
10.3969/j.issn.1001-0505.2020.03.022
摘要:
针对路网中交通检测器布设问题,同时考虑到各路段布设费用差异性、总成本约束与检测器故障情况及观测数据随机不确定性,根据误差传播规律,以降低综合布设费用和提高路段流量推算可靠性为目标,构建了多目标检测器优化布设模型.为验证数学模型的科学性有效性,运用Nguyen-Dupuis和Sioux-Fall网络进行算例对比分析,研究结果表明:通过优化求解算法可获取最佳检测器布设方案,降低了检测器配置费用、提升了路网流量估计质量,且满足全路段流量完整可观测性要求,其流量推算次数及误差累计能有效减少20%与19%,论证了该模型在中大型网络上的适用性和合理性;其设计主要基于网络自身拓扑结构和节点流量守恒方程,不需要历史交通信息及路径信息,有效降低了计算复杂度.
Abstract:
For the network sensor location problem(NSLP), considering the layout costs’ diversities of different links, total cost constraint, sensor failure, random uncertainty of observation data, and the error propagation rule at the same time, a multi-objective sensor optimization layout model was established to reduce the comprehensive layout cost and promote the reliability of link flow inference. To verify the scientificity and validity of the mathematical model, Nguyen-Dupuis and Sioux-Fall networks are adopted for numerical analysis and further comparison. The research results show that the optimal sensor layout scheme can be obtained by an optimization solution algorithm(decreasing the sensor layout cost and improving the quality of link flow estimate), and the number of the link flow inference and the cumulative error can be reduced by 20% and 19%, respectively, meeting the requirements of complete link flow observability and demonstrating the applicability and the rationality of the model in medium-sized and large-scale networks. Its design is mainly based on the network topology and the node flow conservation equation instead of the historical traffic information and path enumeration, reducing the computational complexity and proposing a new approach for solving the NSLP. Thus it has a certain reference value for practical engineering applications.

参考文献/References:

[1] Dimitrakopoulos G, Demestichas P. Intelligent transportation systems[J]. IEEE Vehicular Technology Magazine, 2010, 5(1): 77-84. DOI:10.1109/mvt.2009.935537.
[2] 林培群, 徐建闽. 基于图论的路网交通检测器之布点[J]. 控制理论与应用, 2010, 27(12): 1605-1611.
  Lin P Q, Xu J M. Layout of traffic detectors in road network based on graph theory[J]. Control Theory & Applications, 2010, 27(12): 1605-1611.(in Chinese)
[3] He S X. A graphical approach to identify sensor locations for link flow inference[J]. Transportation Research Part B: Methodological, 2013, 51: 65-76. DOI:10.1016/j.trb.2013.02.006.
[4] Hu S R, Peeta S, Chu C H. Identification of vehicle sensor locations for link-based network traffic applications[J]. Transportation Research Part B: Methodological, 2009, 43(8/9): 873-894. DOI:10.1016/j.trb.2009.02.008.
[5] Castillo E, Gallego I, Sanchez-Cambronero S, et al. Matrix tools for general observability analysis in traffic networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(4): 799-813. DOI:10.1109/tits.2010.2050768.
[6] 王殿海, 徐程, 祁宏生, 等. 基于路段流量相关性的检测器优化布设[J]. 华南理工大学学报(自然科学版), 2011, 39(3): 107-113. DOI:10.3969/j.issn.1000-565X.2011.03.021.
Wang D H, Xu C, Qi H S, et al. Optimal arrangement of detectors based on correlation of link flow[J]. Journal of South China University of Technology(Natural Science Edition), 2011, 39(3): 107-113. DOI:10.3969/j.issn.1000-565X.2011.03.021. (in Chinese)
[7] 何胜学, 孙晶晶. 解决路网检测器布局问题的数形结合方法[J]. 交通运输系统工程与信息, 2016, 16(5): 58-63. DOI:10.3969/j.issn.1009-6744.2016.05.009.
He S X, Sun J J. An algebraic and graphic combination approach to solve network sensor location problems[J]. Journal of Transportation Systems Engineering and Information Technology, 2016, 16(5): 58-63. DOI:10.3969/j.issn.1009-6744.2016.05.009. (in Chinese)
[8] Xu X D, Lo H K, Chen A, et al. Robust network sensor location for complete link flow observability under uncertainty[J]. Transportation Research Part B: Methodological, 2016, 88: 1-20. DOI:10.1016/j.trb.2016.03.006.
[9] 郑长江, 李悦, 王婷. 非常态下城市道路交通检测器布局优化方法[J]. 中国公路学报, 2011, 24(5): 100-106. DOI:10.19721/j.cnki.1001-7372.2011.05.015.
Zheng C J, Li Y, Wang T. Layout optimization method of urban road traffic detectors under abnormal state[J]. China Journal of Highway and Transport, 2011, 24(5): 100-106. DOI:10.19721/j.cnki.1001-7372.2011.05.015. (in Chinese)
[10] Martin P T, Feng Y, Wang X. Detector technology evaluation[R]. Fargo, ND,USA: Mountain-Plains Consortium, 2003.
[11] Zhan F, Wan X, Cheng Y, et al. Methods for multi-type sensor allocations along a freeway corridor[J]. IEEE Intelligent Transportation Systems Magazine, 2018, 10(2): 134-149.
[12] 程琳. 城市交通网络流理论[M]. 南京: 东南大学出版社, 2010: 20-30.
[13] Ng M. Synergistic sensor location for link flow inference without path enumeration: A node-based approach[J]. Transportation Research Part B: Methodological, 2012, 46(6): 781-788. DOI:10.1016/j.trb.2012.02.001.
[14] 王炜, 陆建. 道路交通工程系统分析方法[M]. 北京: 人民交通出版社, 2011: 72-82.
[15] 刘刚, 李永树, 杨骏, 等. 对偶图节点重要度的道路网自动选取方法[J]. 测绘学报, 2014, 43(1): 97-104. DOI:10.13485/j.cnki.11-2089.2014.0014.
Liu G, Li Y S, Yang J, et al. Auto-selection method of road networks based on evaluation of node importance for dual graph[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(1): 97-104. DOI:10.13485/j.cnki.11-2089.2014.0014. (in Chinese)
[16] 孔江涛, 黄健, 龚建兴, 等. 基于复杂网络动力学模型的无向加权网络节点重要性评估[J]. 物理学报, 2018, 67(9): 277-294. DOI:10.7498/aps.67.20172295.
Kong J T, Huang J, Gong J X, et al. Evaluation methods of node importance in undirected weighted networks based on complex network dynamics models[J]. Acta Physica Sinica, 2018, 67(9): 277-294. DOI:10.7498/aps.67.20172295. (in Chinese)

备注/Memo

备注/Memo:
收稿日期: 2019-09-25.
作者简介: 栾鑫(1992—),男,博士生;程琳(联系人),男,博士,教授,博士生导师,gist@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51578150)、国家留学基金资助项目(201806090195).
引用本文: 栾鑫,程琳,李梦莹.考虑成本约束和可靠性的检测器优化布设[J].东南大学学报(自然科学版),2020,50(3):580-585. DOI:10.3969/j.issn.1001-0505.2020.03.022.
更新日期/Last Update: 2020-05-20