[1]李爱群,张琰,吴宜峰.纤维增强橡胶支座力学性能与应用[J].东南大学学报(自然科学版),2020,50(3):586-598.[doi:10.3969/j.issn.1001-0505.2020.03.023]
 Li Aiqun,Zhang Yan,Wu Yifeng.Application and mechanical properties of fiber reinforced rubber bearings[J].Journal of Southeast University (Natural Science Edition),2020,50(3):586-598.[doi:10.3969/j.issn.1001-0505.2020.03.023]
点击复制

纤维增强橡胶支座力学性能与应用()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第3期
页码:
586-598
栏目:
土木工程
出版日期:
2020-05-20

文章信息/Info

Title:
Application and mechanical properties of fiber reinforced rubber bearings
作者:
李爱群123张琰1吴宜峰12
1 北京建筑大学土木与交通工程学院, 北京 100044; 2 北京建筑大学北京未来城市设计高精尖创新中心, 北京 100044; 3 东南大学土木工程学院, 南京 210096
Author(s):
Li Aiqun123 Zhang Yan1 Wu Yifeng12
1 School of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
2 Beijing Advanced Innovation Center for Future Urban Design, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
3 School of Civil Engineering, Southeast University, Nanjing 210096, China
关键词:
纤维增强橡胶支座 力学性能 减震效果
Keywords:
fiber reinforced rubber bearing mechanical properties seismic mitigation effect
分类号:
TU352.1
DOI:
10.3969/j.issn.1001-0505.2020.03.023
摘要:
为了充分掌握纤维增强橡胶支座的发展现状,回顾总结了20年来国内外纤维增强橡胶支座的研究进展.根据支座形式,从无黏结、有黏结与其他形式等3个方面,系统概括了纤维增强橡胶支座力学性能的理论推导、试验与数值模拟研究,并且进一步综述了目前纤维增强橡胶支座在液体储罐、建筑结构、桥梁结构中的工程应用研究成果.研究结果表明,纤维增强橡胶支座具有足够的竖向刚度、较低的水平刚度以及优异的滞回耗能能力,将其应用于工程结构中可取得良好的减隔震效率.最后,根据支座现有的研究基础,提出了有关纤维增强橡胶支座水平刚度的理论推导、抗老化性能、防火性能以及支座标准化生产与设计方法等需要继续探索的若干问题.
Abstract:
To fully understand the current development situation of fiber reinforced rubber bearings, the research progress of fiber-reinforced rubber bearings at home and abroad in the past 20 years was reviewed. The theoretical analyses, experimental investigations and numerical simulation of the mechanical properties of fiber reinforced rubber bearings were systematically summarized according to the types of the bearings including unbounded bearings, bonded bearings and other forms. The current research results of the engineering application of fiber reinforced rubber bearings in liquid storage tanks, building structures, and bridge structures were further summarized. The results show that the fiber reinforced rubber bearings have sufficient vertical stiffness, low horizontal stiffness and excellent hysteretic energy dissipation capacity. The good vibration isolation efficiency can be obtained when fiber reinforced rubber bearings are applied to engineering structures. Finally, according to the existing research of the bearings, the theoretical derivation of the horizontal stiffness, the anti-aging performance, the fire resistance performance, the standardized production, and design methods of fiber reinforced rubber bearings are put forward.

参考文献/References:

[1] 周福霖. 工程结构减震控制[M]. 北京: 地震出版社, 1997:24-25.
[2] Kelly J M. Analysis of fiber-reinforced elastomeric isolators [J]. Journal of Seismology and Earthquake Engineering, 1999,2(1): 19-34.
[3] van Engelen N C, Osgooei P M, Tait M J, et al. Experimental and finite element study on the compression properties of modified rectangular fiber-reinforced elastomeric isolators(MR-FREIs)[J]. Engineering Structures, 2014, 74: 52-64. DOI:10.1016/j.engstruct.2014.04.046.
[4] Osgooei P M, van Engelen N C, Konstantinidis D, et al. Experimental and finite element study on the lateral response of modified rectangular fiber-reinforced elastomeric isolators(MR-FREIs)[J]. Engineering Structures, 2015, 85: 293-303. DOI:10.1016/j.engstruct.2014.11.037.
[5] Tait M J, Toopchi-Nezhad H, Drysdale R G. Influence of end geometry on fiber reinforced elastomeric isolator bearings[EB/OL].(2014-11-25)[2019-07-18]. https://www.researchgate.net/publication/268004606.
[6] van Engelen N C, Tait M J, Konstantinidis D. Experimental investigation of unbonded fiber reinforced elastomeric isolators with modified support geometry[EB/OL].(2014-07-25)[2019-07-18]. https://www.researchgate.net/publication/264384596.
[7] van Engelen N C, Konstantinidis D, Tait M J. Structural and nonstructural performance of a seismically isolated building using stable unbonded fiber-reinforced elastomeric isolators[J]. Earthquake Engineering & Structural Dynamics, 2016, 45(3): 421-439. DOI:10.1002/eqe.2665.
[8] van Engelen N C, Osgooei P M, Tait M J, et al. Partially bonded fiber-reinforced elastomeric isolators(PB-FREIs)[J]. Structural Control and Health Monitoring, 2015, 22(3): 417-432. DOI:10.1002/stc.1682.
[9] Toopchi-Nezhad H, Ghotb M R, Al-Anany Y M, et al. Partially bonded fiber reinforced elastomeric bearings: Feasibility, effectiveness, aging effects, and low temperature response[J]. Engineering Structures, 2019, 179: 120-128. DOI:10.1016/j.engstruct.2018.10.043.
[10] Pinarbasi S, Mengi Y. Elastic layers bonded to flexible reinforcements[J]. International Journal of Solids and Structures, 2008, 45(3/4): 794-820. DOI:10.1016/j.ijsolstr.2007.08.029.
[11] Tsai H C, Kelly J M. Stiffness analysis of fiber-reinforced rectangular seismic isolators[J]. Journal of Engineering Mechanics, 2002, 128(4): 462-470. DOI:10.1061/(asce)0733-9399(2002)128:4(462).
[12] Kelly J M, Takhirov S M. Analytical and experimental study of fiber-reinforced elastomeric isolators [R]. Berkeley, CA, USA: University of California, 2001.
[13] Tsai H C, Kelly J M. Bending stiffness of fiber-reinforced circular seismic isolators[J]. Journal of Engineering Mechanics, 2002, 128(11): 1150-1157. DOI:10.1061/(asce)0733-9399(2002)128:11(1150).
[14] Kelly J M. Seismic isolation systems for developing countries[J]. Earthquake Spectra, 2002, 18(3): 385-406. DOI:10.1193/1.1503339.
[15] Kelly J M, Takhirov S M. Analytical and experimental study of fiber-reinforced strip isolators[R]. Berkeley, CA, USA: University of California,2002.
[16] Angeli P, Russo G, Paschini A. Carbon fiber-reinforced rectangular isolators with compressible elastomer: Analytical solution for compression and bending[J]. International Journal of Solids and Structures, 2013, 50(22/23): 3519-3527. DOI:10.1016/j.ijsolstr.2013.06.016.
[17] Kelly J M, van Engelen N C. Single series solution for the rectangular fiber-reinforced elastomeric isolator compression modulus [R]. Berkeley, CA, USA: University of California,2015.
[18] Kelly J M, van Engelen N C. Fiber-reinforced elastomeric bearings for vibration isolation[J]. Journal of Vibration and Acoustics, 2016, 138(1): 011015. DOI:10.1115/1.4031755.
[19] 刘晗, 谭平, 张亚飞, 等. 纤维增强工程塑料板橡胶隔震支座力学性能理论研究[J]. 土木工程学报, 2018, 51(S2): 124-129, 136. DOI:10.15951/j.tmgcxb.2018.s2.019.
Liu H, Tan P, Zhang Y F, et al. Mechanical analysis of fiber-reinforced plastic plate isolators[J]. China Civil Engineering Journal, 2018, 51(S2): 124-129, 136. DOI:10.15951/j.tmgcxb.2018.s2.019. (in Chinese)
[20] Kelly J, Calabrese A. Analysis of fiber-reinforced elastomeric isolators including stretching of reinforcement and compressibility of elastomer [J]. Ingegneria Sismica, 2013, 30(3): 5-14.
[21] Tsai H C. Tilting analysis of circular elastic layers interleaving with flexible reinforcements[J]. International Journal of Solids and Structures, 2007, 44(18/19): 6318-6329. DOI:10.1016/j.ijsolstr.2007.02.028.
[22] Pinarbasi S, Okay F. Compression of hollow-circular fiber-reinforced rubber bearings[J]. Structural Engineering and Mechanics, 2011, 38(3): 361-384. DOI:10.12989/sem.2011.38.3.361.
[23] Tsai H C. Compression stiffness of infinite-strip bearings of laminated elastic material interleaving with flexible reinforcements[J]. International Journal of Solids and Structures, 2004, 41(24/25): 6647-6660. DOI:10.1016/j.ijsolstr.2004.06.005.
[24] Tsai H C. Compression stiffness of circular bearings of laminated elastic material interleaving with flexible reinforcements[J]. International Journal of Solids and Structures, 2006, 43(11/12): 3484-3497. DOI:10.1016/j.ijsolstr.2005.05.012.
[25] Pinarbasi S, Akyuz U, Mengi Y. A new formulation for the analysis of elastic layers bonded to rigid surfaces[J]. International Journal of Solids and Structures, 2006, 43(14/15): 4271-4296. DOI:10.1016/j.ijsolstr.2005.06.047.
[26] Mengi Y. A new approach for developing dynamic theories for structural elements[J]. International Journal of Solids and Structures, 1980, 16(12): 1155-1168. DOI:10.1016/0020-7683(80)90070-0.
[27] van Engelen N C, Tait M J, Konstantinidis D. Development of design code oriented formulas for elastomeric bearings including bulk compressibility and reinforcement extensibility[J]. Journal of Engineering Mechanics, 2016, 142(6): 04016024. DOI:10.1061/(asce)em.1943-7889.0001015.
[28] van Engelen N C, Konstantinidis D, Tait M J. Shear strain demands in elastomeric bearings subjected to rotation[J]. Journal of Engineering Mechanics, 2017, 143(4): 04017005. DOI:10.1061/(asce)em.1943-7889.0001194.
[29] van Engelen N C, Konstantinidis D, Tait M J. Simplified approximations for critical design parameters of rectangular fiber-reinforced elastomeric isolators[J]. Journal of Engineering Mechanics, 2017, 143(8): 06017009. DOI:10.1061/(asce)em.1943-7889.0001251.
[30] Tsai H C, Kelly J M. Buckling load of seismic isolators affected by flexibility of reinforcement[J]. International Journal of Solids and Structures, 2005, 42(1): 255-269. DOI:10.1016/j.ijsolstr.2004.07.020.
[31] Tsai H C, Kelly J M. Buckling of short beams with warping effect included[J]. International Journal of Solids and Structures, 2005, 42(1): 239-253. DOI:10.1016/j.ijsolstr.2004.07.021.
[32] Moon B Y, Kang G J, Kang B S, et al. Mechanical properties of seismic isolation system with fiber-reinforced bearing of strip type[J]. International Applied Mechanics, 2003, 39(10): 1231-1239. DOI:10.1023/b:inam.0000010377.92594.3c.
[33] Toopchi-Nezhad H, Tait M J, Drysdale R G. Influence of thickness of individual elastomer layers(first shape factor)on the response of unbonded fiber-reinforced elastomeric bearings[J]. Journal of Composite Materials, 2013, 47(27): 3433-3450. DOI:10.1177/0021998312466686.
[34] Osgooei P M, Tait M J, Konstantinidis D. Finite element analysis of unbonded square fiber-reinforced elastomeric isolators(FREIs)under lateral loading in different directions[J]. Composite Structures, 2014, 113: 164-173. DOI:10.1016/j.compstruct.2014.02.033.
[35] Toopchi-Nezhad H, Tait M J, Drysdale R G. Testing and modeling of square carbon fiber-reinforced elastomeric seismic isolators [J]. Structural Control and Health Monitoring, 2008, 15(6): 876-900. DOI: 10.1002/stc.225.
[36] Toopchi-Nezhad H, Tait M J, Drysdale R G. Lateral response evaluation of fiber-reinforced neoprene seismic isolators utilized in an unbonded application[J]. Journal of Structural Engineering, 2008, 134(10): 1627-1637. DOI:10.1061/(asce)0733-9445(2008)134:10(1627).
[37] Toopchi-Nezhad H, Drysdale R G, Tait M J. Parametric study on the response of stable unbonded-fiber reinforced elastomeric isolators(SU-FREIs)[J]. Journal of Composite Materials, 2009, 43(15): 1569-1587. DOI:10.1177/0021998308106322.
[38] Toopchi-Nezhad H, Tait M J, Drysdale R G. Simplified analysis of a low-rise building seismically isolated with stable unbonded fiber reinforced elastomeric isolators[J]. Canadian Journal of Civil Engineering, 2009, 36(7): 1182-1194. DOI:10.1139/l09-056.
[39] van Engelen N C, Tait M J, Konstantinidis D. Horizontal behaviour of stable unbonded fiber reinforced elastomeric isolators(SU-FREIs)with holes[EB/OL].(2012-09-01)[2019-07-18]. https:// www.researchgate.net/publication/265964338.
[40] de Raaf M G P, Tait M J, Toopchi-Nezhad H. Stability of fiber-reinforced elastomeric bearings in an unbonded application[J]. Journal of Composite Materials, 2011, 45(18): 1873-1884. DOI:10.1177/0021998310388319.
[41] 彭天波, 张华, 李建中, 等. FRP橡胶隔振器水平剪切特性的初步研究[J]. 振动与冲击, 2009, 28(5): 127-130, 209. DOI:10.13465/j.cnki.jvs.2009.05.009.
Peng T B, Zhang H, Li J Z, et al. Pilot study on the horizontal shear behaviour of FRP rubber isolators[J]. Journal of Vibration and Shock, 2009, 28(5): 127-130, 209. DOI:10.13465/j.cnki.jvs.2009.05.009. (in Chinese)
[42] Russo G, Pauletta M, Cortesia A. A study on experimental shear behavior of fiber-reinforced elastomeric isolators with various fiber layouts, elastomers and aging conditions[J]. Engineering Structures, 2013, 52: 422-433. DOI:10.1016/j.engstruct.2013.02.034.
[43] Pauletta M, Cortesia A, Russo G. Roll-out instability of small size fiber-reinforced elastomeric isolators in unbonded applications[J]. Engineering Structures, 2015, 102: 358-368. DOI:10.1016/j.engstruct.2015.08.019.
[44] van Engelen N C, Tait M J, Konstantinidis D. Model of the shear behavior of unbonded fiber-reinforced elastomeric isolators[J]. Journal of Structural Engineering, 2015, 141(7): 04014169. DOI:10.1061/(asce)st.1943-541x.0001120.
[45] Toopchi-Nezhad H. Horizontal stiffness solutions for unbonded fiber reinforced elastomeric bearings[J]. Structural Engineering and Mechanics, 2014, 49(3): 395-410. DOI:10.12989/sem.2014.49.3.395.
[46] Gerharer U, Strauss A, Bergmeister K. Verbesserte Bemessungsrichtlinien für Bewehrte Elastomerlager[J]. Bautechnik, 2011, 88(7): 451-458. DOI:10.1002/bate.201101475.
[47] van Ngo T, Dutta A, Deb S K. Evaluation of horizontal stiffness of fibre-reinforced elastomeric isolators[J]. Earthquake Engineering & Structural Dynamics, 2017, 46(11): 1747-1767. DOI:10.1002/eqe.2879.
[48] Russo G, Pauletta M, Cortesia A, et al. Experimental behavior of carbon fiber reinforced isolators[EB/OL].(2008-07-08)[2019-07-18].http://aip.scitation. org/doi/abs/10.1063/1.2963772. DOI:10.1063/1.2963772.
[49] Kelly J M, Konstantinidis D. Effect of friction on unbonded elastomeric bearings[J]. Journal of Engineering Mechanics, 2009, 135(9): 953-960. DOI:10.1061/(asce)em.1943-7889.0000019.
[50] Russo G, Pauletta M. Sliding instability of fiber-reinforced elastomeric isolators in unbonded applications[J]. Engineering Structures, 2013, 48: 70-80. DOI:10.1016/j.engstruct.2012.08.031.
[51] Al-Anany Y M, Tait M J. Experimental assessment of utilizing fiber reinforced elastomeric isolators as bearings for bridge applications[J]. Composites Part B: Engineering, 2017, 114: 373-385. DOI:10.1016/j.compositesb.2017.01.060.
[52] Al-Anany Y M, van Engelen N C, Tait M J. Vertical and lateral behavior of unbonded fiber-reinforced elastomeric isolators[J]. Journal of Composites for Construction, 2017, 21(5): 04017019. DOI:10.1061/(asce)cc.1943-5614.0000794.
[53] Osgooei P M, Tait M J, Konstantinidis D. Three-dimensional finite element analysis of circular fiber-reinforced elastomeric bearings under compression[J]. Composite Structures, 2014, 108: 191-204. DOI:10.1016/j.compstruct.2013.09.008.
[54] Osgooei P M, Konstantinidis D, Tait M J. Variation of the vertical stiffness of strip-shaped fiber-reinforced elastomeric isolators under lateral loading[J]. Composite Structures, 2016, 144: 177-184. DOI:10.1016/j.compstruct.2016.01.089.
[55] Soleimanlo H S, Barkhordar M A. Effect of shape factor and rubber stiffness of fiber-reinforced elastomeric bearings on the vertical stiffness of isolators[J]. Trends in Applied Sciences Research, 2013, 8(1): 14-25. DOI:10.3923/tasr.2013.14.25.
[56] 张华, 彭天波, 李建中, 等. FRP橡胶支座压缩性能分析[J]. 地震工程与工程振动, 2011, 31(3): 154-160. DOI:10.13197/j.eeev.2011.03.013.
Zhang H, Peng T B, Li J Z, et al. Study on compression performance of FRP rubber bearing[J]. Journal of Earthquake Engineering and Engineering Vibration, 2011, 31(3): 154-160. DOI:10.13197/j.eeev.2011.03.013. (in Chinese)
[57] 张华, 彭天波. 新型FRP橡胶支座受压性能研究[J]. 结构工程师, 2011, 27(4): 91-97. DOI:10.15935/j.cnki.jggcs.2011.04.006.
Zhang H, Peng T B. Study on compression performance of an innovate FRP rubber isolator[J]. Structural Engineers, 2011, 27(4): 91-97. DOI:10.15935/j.cnki.jggcs.2011.04.006. (in Chinese)
[58] Al-Anany Y M, Tait M J. A numerical study on the compressive and rotational behavior of fiber reinforced elastomeric isolators(FREI)[J]. Composite Structures, 2015, 133: 1249-1266. DOI:10.1016/j.compstruct.2015.07.042.
[59] Karimzadeh Naghshineh A, Akyuz U, Caner A. Lateral response comparison of unbonded elastomeric bearings reinforced with carbon fiber mesh and steel[J]. Shock and Vibration, 2015, 2015: 1-10. DOI:10.1155/2015/208045.
[60] Spizzuoco M, Calabrese A, Serino G. Innovative low-cost recycled rubber-fiber reinforced isolator: Experimental tests and finite element analyses[J]. Engineering Structures, 2014, 76: 99-111. DOI:10.1016/j.engstruct.2014.07.001.
[61] Zhang H, Peng T B, Li J Z, et al. Experimental study of FRP rubber bearing[J]. Advanced Materials Research, 2010, 168/169/170: 1621-1624. DOI:10.4028/www.scientific.net/amr.168-170.1621.
[62] 王斌, 谭平, 徐凯, 等. 新型纤维增强工程塑料板夹层橡胶隔震支座力学性能试验研究[J]. 土木工程学报, 2012, 45(S1): 187-191. DOI:10.15951/j.tmgcxb.2012.s1.032.
Wang B, Tan P, Xu K, et al. Mechanical performance tests of a novel fiber-reinforced-plastic plate isolation bearing[J]. China Civil Engineering Journal, 2012, 45(S1): 187-191. DOI:10.15951/j.tmgcxb.2012.s1.032. (in Chinese)
[63] 谭平, 徐凯, 王斌, 等. 基于新型简易隔震支座的村镇建筑隔震性能研究[J]. 土木工程学报, 2013, 46(5): 64-70. DOI:10.15951/j.tmgcxb.2013.05.018.
Tan P, Xu K, Wang B, et al. Performance study of isolated rural buildings using novel simple isolators[J]. China Civil Engineering Journal, 2013, 46(5): 64-70. DOI:10.15951/j.tmgcxb.2013.05.018. (in Chinese)
[64] 谭平, 王斌, 金建敏, 等. 纤维增强工程塑料板夹层橡胶隔震支座有限元分析[J]. 振动与冲击, 2014, 33(24): 95-100. DOI:10.13465/j.cnki.jvs.2014.24.016.
Tan P, Wang B, Jin J M, et al. Finite element analysis for a fiber-reinforced-plastic plate isolation bearing[J]. Journal of Vibration and Shock, 2014, 33(24): 95-100. DOI:10.13465/j.cnki.jvs.2014.24.016. (in Chinese)
[65] Moon B Y, Kang G J, Kang B S, et al. Design and manufacturing of fiber reinforced elastomeric isolator for seismic isolation[J]. Journal of Materials Processing Technology, 2002, 130/131: 145-150. DOI:10.1016/s0924-0136(02)00713-6.
[66] Kang B S, Kang G J, Moon B Y. Hole and lead plug effect on fiber reinforced elastomeric isolator for seismic isolation[J]. Journal of Materials Processing Technology, 2003, 140(1/2/3): 592-597. DOI:10.1016/s0924-0136(03)00798-2.
[67] 江胜华, 侯建国, 何英明, 等. 纤维橡胶支座的力学性能研究[J]. 土木工程学报, 2012, 45(S1): 227-232. DOI:10.15951/j.tmgcxb.2012.s1.038.
Jiang S H, Hou J G, He Y M, et al. Mechanical study of fiber reinforced elastomeric isolator[J]. China Civil Engineering Journal, 2012, 45(S1): 227-232. DOI:10.15951/j.tmgcxb.2012.s1.038. (in Chinese)
[68] Toopchi-Nezhad H, Tait M J, Drysdale R G. Bonded versus unbonded strip fiber reinforced elastomeric isolators: Finite element analysis[J]. Composite Structures, 2011, 93(2): 850-859. DOI:10.1016/j.compstruct.2010.07.009.
[69] Strauss A, Apostolidi E, Zimmermann T, et al. Experimental investigations of fiber and steel reinforced elastomeric bearings: Shear modulus and damping coefficient[J]. Engineering Structures, 2014, 75: 402-413. DOI:10.1016/j.engstruct.2014.06.008.
[70] Ashkezari G D, Aghakouchak A A, Kokabi M. Design, manufacturing and evaluation of the performance of steel like fiber reinforced elastomeric seismic isolators[J]. Journal of Materials Processing Technology, 2008, 197(1/2/3): 140-150. DOI:10.1016/j.jmatprotec.2007.06.023.
[71] Karimzadeh Naghshineh A, Akyüz U, Caner A. Comparison of fundamental properties of new types of fiber-mesh-reinforced seismic isolators with conventional isolators[J]. Earthquake Engineering & Structural Dynamics, 2014, 43(2): 301-316. DOI:10.1002/eqe.2345.
[72] 田杰, 郭风建, 杜志超, 等. 纤维-PTFE板橡胶组合隔震支座水平性能试验研究[J]. 土木工程学报, 2014, 47(S1): 164-168. DOI:10.15951/j.tmgcxb.2014.s1.029.
Tian J, Guo F J, Du Z C, et al. Research on the horizontal properties of fiber-PTFE board and rubber combined isolation bearing in test[J]. China Civil Engineering Journal, 2014, 47(S1): 164-168. DOI:10.15951/j.tmgcxb.2014.s1.029. (in Chinese)
[73] Hedayati Dezfuli F, Alam M S. Performance of carbon fiber-reinforced elastomeric isolators manufactured in a simplified process: Experimental investigations[J]. Structural Control and Health Monitoring, 2014, 21(11): 1347-1359. DOI:10.1002/stc.1653.
[74] Hedayati Dezfuli F, Alam M. Experiment-based sensitivity analysis of scaled carbon-fiber-reinforced elastomeric isolators in bonded applications[J]. Fibers, 2016, 4(1): 4. DOI:10.3390/fib4010004.
[75] Ehsani B, Toopchi-Nezhad H. Systematic design of unbonded fiber reinforced elastomeric isolators[J]. Engineering Structures, 2017, 132: 383-398. DOI:10.1016/j.engstruct.2016.11.036.
[76] Mordini A, Strauss A. An innovative earthquake isolation system using fibre reinforced rubber bearings[J]. Engineering Structures, 2008, 30(10): 2739-2751. DOI:10.1016/j.engstruct.2008.03.010.
[77] Kang B S, Li L, Ku T W. Dynamic response characteristics of seismic isolation systems for building structures[J]. Journal of Mechanical Science and Technology, 2009, 23(8): 2179-2192. DOI:10.1007/s12206-009-0437-x.
[78] Hedayati Dezfuli F, Alam M S. Multi-criteria optimization and seismic performance assessment of carbon FRP-based elastomeric isolator[J]. Engineering Structures, 2013, 49: 525-540. DOI:10.1016/j.engstruct.2012.10.028.
[79] Al-Anany Y M, Moustafa M A, Tait M J. Modeling and evaluation of a seismically isolated bridge using unbonded fiber-reinforced elastomeric isolators[J]. Earthquake Spectra, 2018, 34(1): 145-168. DOI:10.1193/072416eqs118m.
[80] Thuyet V N, Deb S K, Dutta A. Mitigation of seismic vulnerability of prototype low-rise masonry building using U-FREIs[J]. Journal of Performance of Constructed Facilities, 2018, 32(2): 04017136. DOI:10.1061/(asce)cf.1943-5509.0001136.
[81] Das A, Deb S K, Dutta A. Comparison of numerical and experimental seismic responses of FREI-supported un-reinforced brick masonry model building[J]. Journal of Earthquake Engineering, 2016, 20(8): 1239-1262. DOI:10.1080/13632469.2016.1140098.
[82] Habieb A B, Milani G, Tavio T. Two-step advanced numerical approach for the design of low-cost unbonded fiber reinforced elastomeric seismic isolation systems in new masonry buildings[J]. Engineering Failure Analysis, 2018, 90: 380-396. DOI:10.1016/j.engfailanal.2018.04.002.
[83] Kang G J, Kang B S. Dynamic analysis of fiber-reinforced elastomeric isolation structures[J]. Journal of Mechanical Science and Technology, 2009, 23(4): 1132-1141. DOI:10.1007/s12206-008-1214-y.
[84] Pauletta M, Cortesia A, Pitacco I, et al. A new bi-linear constitutive shear relationship for unbonded fiber-reinforced elastomeric lsolators(U-FREIs)[J]. Composite Structures, 2017, 168: 725-738. DOI:10.1016/j.compstruct.2017.02.065.
[85] Osgooei P M, Tait M J, Konstantinidis D. Seismic isolation of a shear wall structure using rectangular fiber-reinforced elastomeric isolators[J]. Journal of Structural Engineering, 2016, 142(2): 04015116. DOI:10.1061/(asce)st.1943-541x.0001376.
[86] Osgooei P M, Tait M J, Konstantinidis D. Non-iterative computational model for fiber-reinforced elastomeric isolators[J]. Engineering Structures, 2017, 137: 245-255. DOI:10.1016/j.engstruct.2017.01.056.
[87] Castellano A, Foti P, Fraddosio A, et al. Seismic response of a historic masonry construction isolated by stable unbonded fiber-reinforced elastomeric isolators(SU-FREI)[J]. Key Engineering Materials, 2014, 628: 160-167. DOI:10.4028/www.scientific.net/kem.628.160.
[88] Das A, Deb S K, Dutta A. Shake table testing of un-reinforced brick masonry building test model isolated by U-FREI[J]. Earthquake Engineering & Structural Dynamics, 2016, 45(2): 253-272. DOI:10.1002/eqe.2626.
[89] Calabrese A, Spizzuoco M, Serino G, et al. Shaking table investigation of a novel, low-cost, base isolation technology using recycled rubber[J]. Structural Control and Health Monitoring, 2015, 22(1): 107-122. DOI:10.1002/stc.1663.
[90] Calabrese A, Strano S, Terzo M. Real-time hybrid simulations vs shaking table tests: Case study of a fibre-reinforced bearings isolated building under seismic loading[J]. Structural Control and Health Monitoring, 2015, 22(3): 535-556. DOI:10.1002/stc.1687.
[91] Toopchi-Nezhad H, Tait M J, Drysdale R G. Shake table study on an ordinary low-rise building seismically isolated with SU-FREIs(stable unbonded-fiber reinforced elastomeric isolators)[J]. Earthquake Engineering & Structural Dynamics, 2009, 38(11): 1335-1357. DOI:10.1002/eqe.923.
[92] 黄襄云, 周福霖, 曹京源, 等. 纤维橡胶隔震结构模拟地震振动台试验研究及仿真分析[J]. 广州大学学报(自然科学版), 2010, 9(5): 21-26. DOI:10.3969/j.issn.1671-4229.2010.05.005.
Huang X Y, Zhou F L, Cao J Y, et al. Simulating earthquake shaking table tests of isolation structure with fiber-reinforced isolator and finite element analysis[J]. Journal of Guangzhou University(Natural Science Edition), 2010, 9(5): 21-26. DOI:10.3969/j.issn.1671-4229.2010.05.005. (in Chinese)

相似文献/References:

[1]江心怡,薛烽,赵阔.Mg-Al-RE系镁合金组织与性能[J].东南大学学报(自然科学版),2010,40(3):646.[doi:10.3969/j.issn.1001-0505.2010.03.040]
 Jiang Xinyi,Xue Feng,Zhao Kuo.Microstructures and mechanical properties of Mg-Al-RE alloys[J].Journal of Southeast University (Natural Science Edition),2010,40(3):646.[doi:10.3969/j.issn.1001-0505.2010.03.040]
[2]程洁,周啸,李俐军,等.冠脉支架的多功能体外力学性能测试装置及实验研究[J].东南大学学报(自然科学版),2010,40(2):341.[doi:10.3969/j.issn.1001-0505.2010.02.024]
 Cheng Jie,Zhou Xiao,Li Lijun,et al.In-vitro test apparatus and experimental study of mechanics properties of coronary stents[J].Journal of Southeast University (Natural Science Edition),2010,40(3):341.[doi:10.3969/j.issn.1001-0505.2010.02.024]
[3]吴晓婧,薛烽,周健,等.Cu,Ni对Sn-Zn-Al无铅焊料组织和性能的影响[J].东南大学学报(自然科学版),2009,39(3):623.[doi:10.3969/j.issn.1001-0505.2009.03.038]
 Wu Xiaojing,Xue Feng,Zhou Jian,et al.Effect of Cu and Ni on microstructure and properties of Sn-Zn-Al lead-free solders[J].Journal of Southeast University (Natural Science Edition),2009,39(3):623.[doi:10.3969/j.issn.1001-0505.2009.03.038]
[4]周健,王常亮,薛烽.Sn-Zn钎料Cu接头的界面反应及力学性能[J].东南大学学报(自然科学版),2009,39(3):615.[doi:10.3969/j.issn.1001-0505.2009.03.037]
 Zhou Jian,Wang Changliang,Xue Feng.Interfacial reaction and joint strength of Sn-Zn solder/Cu[J].Journal of Southeast University (Natural Science Edition),2009,39(3):615.[doi:10.3969/j.issn.1001-0505.2009.03.037]
[5]张秀芝,孙伟,张倩倩,等.混杂钢纤维增强超高性能水泥基材料力学性能分析[J].东南大学学报(自然科学版),2008,38(1):156.[doi:10.3969/j.issn.1001-0505.2008.01.030]
 Zhang Xiuzhi,Sun Wei,Zhang Qianqian,et al.Mechanical behaviors of hybrid steel fiber reinforced ultra-high performance cementitious composites[J].Journal of Southeast University (Natural Science Edition),2008,38(3):156.[doi:10.3969/j.issn.1001-0505.2008.01.030]
[6]付小琴,周健,孙扬善,等.Sn-8Zn-3Bi-P无铅钎料微观组织及性能[J].东南大学学报(自然科学版),2006,36(5):831.[doi:10.3969/j.issn.1001-0505.2006.05.030]
 Fu Xiaoqin,Zhou Jian,Sun Yangshan,et al.Effect of phosphorus on microstructure and properties of Sn-8Zn-3Bi lead-free solder[J].Journal of Southeast University (Natural Science Edition),2006,36(3):831.[doi:10.3969/j.issn.1001-0505.2006.05.030]
[7]左晓宝,等.一种超弹性SMA复合阻尼器的设计与试验[J].东南大学学报(自然科学版),2004,34(4):459.[doi:10.3969/j.issn.1001-0505.2004.04.009]
 Zuo Xiaobao,Li Aiqun,et al.Design and experimental investigation of superelastic SMA damper[J].Journal of Southeast University (Natural Science Edition),2004,34(3):459.[doi:10.3969/j.issn.1001-0505.2004.04.009]
[8]魏宇,孙扬善,樊泉,等.TiC强化Cr12MoV基复合材料的组织和性能分析[J].东南大学学报(自然科学版),2003,33(4):463.[doi:10.3969/j.issn.1001-0505.2003.04.020]
 Wei Yu,Sun Yangshan,Fan Quan,et al.Microstructure and mechanical properties of TiC reinforced Cr12MoV composite[J].Journal of Southeast University (Natural Science Edition),2003,33(3):463.[doi:10.3969/j.issn.1001-0505.2003.04.020]
[9]闵学刚,孙扬善,杜温文,等.Ca,Si和RE对AZ91合金的组织和性能的影响[J].东南大学学报(自然科学版),2002,32(3):409.[doi:10.3969/j.issn.1001-0505.2002.03.022]
 Min Xuegang,Sun Yangshan,Du Wenwen,et al.Effects of Ca,Si and RE additions on the microstructures and mechanical properties of AZ91 based alloys[J].Journal of Southeast University (Natural Science Edition),2002,32(3):409.[doi:10.3969/j.issn.1001-0505.2002.03.022]
[10]杨春,蔡健,张学文,等.劲性钢管混凝土组合柱轴压性能试验研究[J].东南大学学报(自然科学版),2002,32(5):715.[doi:10.3969/j.issn.1001-0505.2002.05.008]
 Yang Chun,Cai Jian,Zhang Xuewen,et al.Experimental research on the composite column with cone of concrete filled steel tube under axial loads[J].Journal of Southeast University (Natural Science Edition),2002,32(3):715.[doi:10.3969/j.issn.1001-0505.2002.05.008]

备注/Memo

备注/Memo:
收稿日期: 2019-12-19.
作者简介: 李爱群(1962—),男,博士,教授,博士生导师,liaiqun@bucea.edu.cn.
基金项目: 国家自然科学基金资助项目(51438002,51578151)、北京市自然科学基金资助项目(8194057)、北京市市属高校基本科研业务费资助项目(X-18239)、北京建筑大学北京未来城市设计高精尖创新中心资助项目(UDC2016030200).
引用本文: 李爱群,张琰,吴宜峰.纤维增强橡胶支座力学性能与应用[J].东南大学学报(自然科学版),2020,50(3):586-598. DOI:10.3969/j.issn.1001-0505.2020.03.023.
更新日期/Last Update: 2020-05-20