[1]涂永明,刘东运,张雨.提升粉煤灰混凝土抗碳化性能试验研究[J].东南大学学报(自然科学版),2020,50(4):599-605.[doi:10.3969/j.issn.1001-0505.2020.04.001]
 Tu Yongming,Liu Dongyun,Zhang Yu.Experimental study on boosting carbonation resistance of fly ash concrete[J].Journal of Southeast University (Natural Science Edition),2020,50(4):599-605.[doi:10.3969/j.issn.1001-0505.2020.04.001]
点击复制

提升粉煤灰混凝土抗碳化性能试验研究()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第4期
页码:
599-605
栏目:
材料科学与工程
出版日期:
2020-07-20

文章信息/Info

Title:
Experimental study on boosting carbonation resistance of fly ash concrete
作者:
涂永明12刘东运1张雨1
1东南大学土木工程学院, 南京 211189; 2东南大学国家预应力工程技术研究中心, 南京 211189
Author(s):
Tu Yongming12 Liu Dongyun1 Zhang Yu1
1School of Civil Engineering, Southeast University, Nanjing 211189, China
2National Engineering Research Center for Prestressing, Southeast University, Nanjing 211189, China
关键词:
粉煤灰混凝土 预碳化 养护方式 碳化深度
Keywords:
fly ash concrete pre-carbonization curing method carbonation depth
分类号:
TU528.09
DOI:
10.3969/j.issn.1001-0505.2020.04.001
摘要:
为提升大掺量粉煤灰混凝土的抗碳化性能,提出了一种预碳化再碱化的养护处理方法. 采用快速碳化试验,对普通混凝土和质量分数为20%、30%和40%的粉煤灰混凝土进行了碳化3、7、14、28 d的碳化深度测试,对比分析了不同养护方法对粉煤灰混凝土抗碳化能力的影响. 结果表明:粉煤灰混凝土的碳化深度随着碳化时间和粉煤灰掺量的增加而增加;与延长养护时间和水养护一样,提出的碳化试验之前预碳化再碱化养护处理可以有效地降低混凝土的碳化深度. 对于质量分数为30%的粉煤灰混凝土,预碳化1 d再碱化1 d处理后的抗碳化能力与标准养护下的普通混凝土相当. 对于普通混凝土,预碳化3 d再碱化1 d,提升抗碳化能力的效果最佳.
Abstract:
To boost the carbonation resistance of fly ash concrete, a pre-carbonization and re-alkalization curing method is proposed. Through the accelerated carbonation test, the carbonation depth after 3, 7, 14 and 28 d of carbonation was measured for the fly ash concrete with the fly ash content of 20%, 30% and 40% and ordinary concrete without fly ash. The effects of different curing methods on the carbonation resistance of fly ash concrete were compared and analyzed. Results show that the carbonation depth of the fly ash concrete increases with the increase of carbonation time and the fly ash content. Similar to the prolonging curing time and water curing, the pre-carbonization and re-alkalization curing before the carbonation test can efficiently improve the carbonation resistance of concrete. For the concrete with the fly ash content of 30%, the carbonation resistance after subjected to pre-carbonization for 1 d and re-alkalization for 1 d can be comparable to that of the ordinary concrete under standard curing. For the ordinary concrete, the optimal curing method is pre-carbonization for 3 d and re-alkalization for 1 d.

参考文献/References:

[1] Naik T R, Kraus R N, Ramme B W, et al. Effects of fly ash and foundry sand on performance of architectural precast concrete[J].Journal of Materials in Civil Engineering, 2012, 24(7): 851-859. DOI:10.1061/(asce)mt.1943-5533.0000432.
[2] Zhang D, Cai X H, Shao Y X. Carbonation curing of precast fly ash concrete[J].Journal of Materials in Civil Engineering, 2016, 28(11): 04016127. DOI:10.1061/(asce)mt.1943-5533.0001649.
[3] 钱觉时. 粉煤灰特性与粉煤灰混凝土 [M]. 北京: 科学出版社, 2002: 278.
[4] 朱亚鹏, 余亮, 吕健, 等. 粉煤灰与矿渣对混凝土物理力学性能及耐久性能的影响[J]. 武汉大学学报(工学版), 2018, 51(A01): 130-134.
  Zhu Y P, Yu L, Lü J, et al. Effect of fly ash and slag on physico-mechanical property and durability behavior of concrete[J]. Engineering Journal of Wuhan University, 2018, 51(A01): 130-134.(in Chinese)
[5] Siddique R. Performance characteristics of high-volume class F fly ash concrete[J].Cement and Concrete Research, 2004, 34(3): 487-493. DOI:10.1016/j.cemconres.2003.09.002.
[6] 张俊儒, 闻毓民, 欧小强. 粉煤灰喷射混凝土孔隙结构的演变特征[J]. 西南交通大学学报, 2018, 53(2): 296-302.DOI:10.3969/j.issn.0258-2724.2018.02.011.
Zhang J R, Wen Y M, Ou X Q. Evolutionary characteristics of pore structure of fly ash shotcrete[J]. Journal of Southwest Jiaotong University, 2018, 53(2): 296-302.302.DOI:10.3969/j.issn.0258-2724.2018.02.011. (in Chinese)
[7] Yu Z Q, Ye G. The pore structure of cement paste blended with fly ash[J].Construction and Building Materials, 2013, 45: 30-35. DOI:10.1016/j.conbuildmat.2013.04.012.
[8] Yu Z Q, Ma J, Ye G, et al. Effect of fly ash on the pore structure of cement paste under a curing period of 3 years[J].Construction and Building Materials, 2017, 144: 493-501. DOI:10.1016/j.conbuildmat.2017.03.182.
[9] Wang Q, Feng J J, Yan P Y. The microstructure of 4-year-old hardened cement-fly ash paste[J].Construction and Building Materials, 2012, 29: 114-119. DOI:10.1016/j.conbuildmat.2011.08.088.
[10] Lu C F, Wang W, Li Q T, et al. Effects of micro-environmental climate on the carbonation depth and the pH value in fly ash concrete[J].Journal of Cleaner Production, 2018, 181: 309-317. DOI:10.1016/j.jclepro.2018.01.155.
[11] Dinakar P, Babu K G, Santhanam M. Corrosion resistance performance of high-volume fly-ash self-compacting concretes[J].Magazine of Concrete Research, 2009, 61(2): 77-85. DOI:10.1680/macr.2006.00016.
[12] Payá J, Monzó J, Borrachero M V, et al. Mechanical treatment of fly ashes: Part Ⅳ. strength development of ground fly ash-cement mortars cured at different temperatures [J]. Cement and Concrete Research, 2000, 30(4): 543-551. DOI:10.1016/S0008-8846(00)00218-0.
[13] Tian Y G, Peng B, Yang T T, et al. Influence of curing condition on the mechanical properties and durability of high strength concrete [J]. International Journal of Pavement Research and Technology, 2014, 7(6): 417-424. DOI:10.6135/ijprt.org.tw/2014.7(6).417.
[14] Zhang Z, Li M, Wang Q. Influence of high-volume mineral mixtures and the steam-curing temperatures on the properties of precast concrete [J]. Indian Journal of Engineering and Materials Sciences, 2017, 24(5): 397-405.
[15] Zhang D, Shao Y X. Early age carbonation curing for precast reinforced concretes[J].Construction and Building Materials, 2016, 113: 134-143. DOI:10.1016/j.conbuildmat.2016.03.048.
[16] 刘晓琴. 二氧化碳养护对掺粉煤灰水泥基材料性能的影响[D]. 重庆: 重庆大学, 2017.
  Liu X Q.The effect of carbon dioxide curing on properties of cement-based materials with fly ash[D]. Chongqing: Chongqing University, 2017.(in Chinese)
[17] Jerga J. Physico-mechanical properties of carbonated concrete[J].Construction and Building Materials, 2004, 18(9): 645-652. DOI:10.1016/j.conbuildmat.2004.04.029.
[18] 柳俊哲. 混凝土碳化研究与进展(1): 碳化机理及碳化程度评价[J]. 混凝土, 2005(11): 10-13, 23.
  Liu J Z. A review of carbonation in reinforced concrete(Ⅰ): Mechanism of carbonation and evaluative methods[J]. Concrete, 2005(11): 10-13, 23.(in Chinese)
[19] Aguirre A M, de Gutiérrez R M, Restucci J P, et al. Study of a repair technique in carbonated blended mortars: Electrochemical re-alkalization[J]. DYNA, 2016, 83(196): 93-99. DOI:10.15446/dyna.v83n196.49249.
[20] Shen L, Jiang H, Cao J D, et al. A comparison study of the performance of three electro-migrating corrosion inhibitors in improving the concrete durability and rehabilitating decayed reinforced concrete[J].Construction and Building Materials, 2020, 238: 117673. DOI:10.1016/j.conbuildmat.2019.117673.
[21] Banfill P F G. Re-alkalisation of carbonated concrete: Effect on concrete properties[J].Construction and Building Materials, 1997, 11(4): 255-258. DOI:10.1016/s0950-0618(97)00045-7.
[22] Redaelli E, Bertolini L. Resistance to carbonation of concrete after re-alkalization by absorption of sodium carbonate solution[J].Studies in Conservation, 2016, 61(5): 297-305. DOI:10.1179/2047058415y.0000000011.
[23] 全国水泥标准化技术委员会. GB/T 1596—2017 用于水泥和混凝土中的粉煤灰 [S]. 北京: 中国标准出版社, 2017.
[24] 中华人民共和国住房和城乡建设部. GB/T 50082—2009普通混凝土长期性能和耐久性能试验方法标准 [S]. 北京: 中国建筑工业出版社, 2009.
[25] Zajac M, Haha M B. Experimental investigation and modeling of hydration and performance evolution of fly ash cement[J]. Materials and Structures, 2014, 47(7): 1259-1269. DOI:10.1617/s11527-013-0126-1.
[26] 龚浴书, 柳春圃. 混凝土的耐久性及其防护修补 [M]. 北京: 中国建筑工业出版社, 1990: 162.
[27] Liu B J, Luo G, Xie Y J. Effect of curing conditions on the permeability of concrete with high volume mineral admixtures[J].Construction and Building Materials, 2018, 167: 359-371. DOI:10.1016/j.conbuildmat.2018.01.190.
[28] Younsi A, Turcry P, Aït-Mokhtar A, et al. Accelerated carbonation of concrete with high content of mineral additions: Effect of interactions between hydration and drying[J].Cement and Concrete Research, 2013, 43: 25-33. DOI:10.1016/j.cemconres.2012.10.008.

相似文献/References:

[1]陈树东,孙伟,张云升,等.粉煤灰混凝土二维、三维碳化深度的预测[J].东南大学学报(自然科学版),2007,37(4):645.[doi:10.3969/j.issn.1001-0505.2007.04.020]
 Chen Shudong,Sun Wei,Zhang Yunsheng,et al.Carbonation depth prediction of fly ash concrete subjected to 2 and 3 dimensional CO2 attack[J].Journal of Southeast University (Natural Science Edition),2007,37(4):645.[doi:10.3969/j.issn.1001-0505.2007.04.020]
[2]陈波,张亚梅,郭丽萍.大掺量粉煤灰混凝土干燥收缩性能[J].东南大学学报(自然科学版),2007,37(2):334.[doi:10.3969/j.issn.1001-0505.2007.02.030]
 Chen Bo,Zhang Yamei,Guo Liping.Investigation of drying shrinkage of high volume fly ash concrete[J].Journal of Southeast University (Natural Science Edition),2007,37(4):334.[doi:10.3969/j.issn.1001-0505.2007.02.030]

备注/Memo

备注/Memo:
收稿日期: 2020-01-10.
作者简介: 涂永明(1978—),男,博士,副教授,tuyongming@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51378104).
引用本文: 涂永明,刘东运,张雨.提升粉煤灰混凝土抗碳化性能试验研究[J].东南大学学报(自然科学版),2020,50(4):599-605. DOI:10.3969/j.issn.1001-0505.2020.04.001.
更新日期/Last Update: 2020-07-20