[1]杜硕,戴国亮,高鲁超,等.波流作用近海风机单桩基础局部冲刷深度预测[J].东南大学学报(自然科学版),2020,50(4):616-622.[doi:10.3969/j.issn.1001-0505.2020.04.003]
 Du Shuo,Dai Guoliang,Gao Luchao,et al.Prediction of local scour depth at offshore wind turbine monopile foundation in combined waves and current[J].Journal of Southeast University (Natural Science Edition),2020,50(4):616-622.[doi:10.3969/j.issn.1001-0505.2020.04.003]
点击复制

波流作用近海风机单桩基础局部冲刷深度预测()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第4期
页码:
616-622
栏目:
土木工程
出版日期:
2020-07-20

文章信息/Info

Title:
Prediction of local scour depth at offshore wind turbine monopile foundation in combined waves and current
作者:
杜硕戴国亮高鲁超万志辉竺明星
东南大学混凝土及预应力混凝土结构教育部重点实验室, 南京 211189; 东南大学土木工程学院, 南京 211189
Author(s):
Du Shuo Dai Guoliang Gao Luchao Wan Zhihui Zhu Mingxing
Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, Southeast University, Nanjing 211189, China
School of Civil Engineering, Southeast University, Nanjing 211189, China
关键词:
近海风电 单桩 波流 量纲分析 局部冲刷深度
Keywords:
offshore wind turbine monopile waves and current dimensional analysis local scour depth
分类号:
TU473
DOI:
10.3969/j.issn.1001-0505.2020.04.003
摘要:
在波浪和潮流的联合作用下,海上风电单桩基础的局部冲刷机理相对复杂,导致现有局部冲刷深度计算方法存在差异,基于量纲分析原理,考虑波流作用下单桩局部冲刷的主要影响因素,结合已有试验资料,提出适用于波流作用下的单桩基础局部冲刷深度预测公式.结合江苏如东海上风电场的冲刷监测数据,应用4种统计学评价指标,对比国内规范公式、DNV规范公式、HEC-18公式、Rudolph公式、Raaijmakers公式和所提出公式的预测值,结果表明,所提出公式的预测值与现场监测数据吻合较好,其相对误差、平均相对误差(20.10%)、方差(3.90%)和归一化方差(3.93%)均小于其他预测公式,从而验证了所提出的局部冲刷深度预测公式的适用性和有效性.该研究为海上风电局部冲刷设计提供了理论参考.
Abstract:
The local scour mechanism of the offshore wind turbine monopile foundation is relatively complex in the combined waves and current, leading to the differences in the existing local scour depth prediction methods. Based on the dimensional analysis principle and experimental data, an empirical formula is proposed for predicting local scour depth, which considers the main controlling factors in combined waves and current. Combined with the field monitoring data of Rudong offshore wind power plant in Jiangsu Province,four statistical evaluation indicators were used to compare the performance of the predictive equations of local scour depth, including Chinese standard formula, DNV formula, HEC-18 formula, Rudolph formula, Raaijmakers formula and the proposed formula. The predicted values of the proposed formula are in good agreement with the field monitoring data, and the relative error, the average absolute relative error(20.10%), the variance(3.90%)and the normalized variance(3.93%)are all smaller than those of the other formulae, indicating that the proposed prediction formula is reasonable and effective. This research provides a theoretical reference for the local scour design of offshore wind turbine.

参考文献/References:

[1] Sumer B M, Fredsøe J. Scour around pile in combined waves and current[J].Journal of Hydraulic Engineering, 2001, 127(5): 403-411. DOI:10.1061/(asce)0733-9429(2001)127:5(403).
[2] Matutano C, Negro V, López-Gutiérrez J S, et al. Scour prediction and scour protections in offshore wind farms[J].Renewable Energy, 2013, 57: 358-365. DOI:10.1016/j.renene.2013.01.048.
[3] Moreno M, Maia R, Couto L. Prediction of equilibrium local scour depth at complex bridge piers[J].Journal of Hydraulic Engineering, 2016, 142(11): 04016045. DOI:10.1061/(asce)hy.1943-7900.0001153.
[4] 高徐昌, 姚炎明. 潮流作用下桥墩局部冲刷深度公式研究[J]. 科技通报, 2019, 35(1): 232-235. DOI:10.13774/j.cnki.kjtb.2019.01.045.
Gao X C, Yao Y M. Research of the formula of local scour depth at bridge piers under tidal flow[J].Bulletin of Science and Technology, 2019, 35(1): 232-235. DOI:10.13774/j.cnki.kjtb.2019.01.045. (in Chinese)
[5] Link O, Henríquez S, Ettmer B. Physical scale modelling of scour around bridge piers[J].Journal of Hydraulic Research, 2019, 57(2): 227-237. DOI:10.1080/00221686.2018.1475428.
[6] Liang F Y, Wang C, Yu X B. Performance of existing methods for estimation and mitigation of local scour around bridges: Case studies[J].Journal of Performance of Constructed Facilities, 2019, 33(6): 04019060. DOI:10.1061/(asce)cf.1943-5509.0001329.
[7] 程永舟, 唐雯, 李典麒, 等. 波浪作用下斜坡沙质海床上桩柱周围局部冲刷试验研究[J]. 水科学进展, 2018, 29(2): 260-268. DOI:10.14042/j.cnki.32.1309.2018.02.014.
Cheng Y Z, Tang W, Li D Q, et al. Experimental study on local scour around the pile on the sandy seabed under wave action[J]. Advances in Water Science, 2018, 29(2): 260-268. DOI:10.14042/j.cnki.32.1309.2018.02.014. (in Chinese)
[8] Ahmad N, Bihs H, Myrhaug D, et al. Three-dimensional numerical modelling of wave-induced scour around piles in a side-by-side arrangement[J].Coastal Engineering, 2018, 138: 132-151. DOI:10.1016/j.coastaleng.2018.04.016.
[9] McGovern D, Rossetto T, Todd D. Tsunami scour and forces at onshore structures[C]//Coastal Structures 2019. Karlsruhe, Germany, 2019: 506-515. DOI: 10.18451/978-3-939230-64-9_051.
[10] Rudolph D, Bos K J. Scour around a monopile under combined wave-current conditions and low KC-numbers [C]//Proceedings of 3rd International Conference on Scour and Erosion. Amsterdam, The Netherlands, 2006: 582-588.
[11] Qi W G, Li Y X, Xu K, et al. Physical modelling of local scour at twin piles under combined waves and current[J].Coastal Engineering, 2019, 143: 63-75. DOI:10.1016/j.coastaleng.2018.10.009.
[12] 张磊, 林烁, 薛艳, 等. 海上风电单桩局部冲刷及防护试验研究[C]//第十九届中国海洋(岸)工程学术讨论会论文集(上).重庆, 2019:373-376.
  Zhang L, Lin S, Xue Y, et al. Experimental study on local scour and protection of offshore turbine monopole[C]//Proceedings of 19th Chinese Conference on Ocean(Shore)Engineering(Part 1). Chongqing, China, 2019: 373-376.(in Chinese)
[13] Min B, Kim H, Ryoo H S. Scour depth around multiple piles for current and wave[J]. Vibroengineering Procedia, 2018, 19: 210-215. DOI:10.21595/vp.2018.20164.
[14] 祁一鸣, 陆培东, 曾成杰, 等. 海上风电桩基局部冲刷试验研究[J]. 水利水运工程学报, 2015(6): 60-67. DOI:10.16198/j.cnki.1009-640X.2015.06.009.
Qi Y M, Lu P D, Zeng C J, et al. Experimental studies on local scour of offshore wind turbine pile[J]. Hydro-Science and Engineering, 2015(6): 60-67. DOI:10.16198/j.cnki.1009-640X.2015.06.009. (in Chinese)
[15] 祝志文, 喻鹏. 中美规范桥墩局部冲刷深度计算的比较研究[J]. 中国公路学报, 2016, 29(1): 36-43. DOI:10.19721/j.cnki.1001-7372.2016.01.005.
Zhu Z W, Yu P. Comparative study between Chinese code and US code on calculation of local scour depth around bridge piers[J]. China Journal of Highway and Transport, 2016, 29(1): 36-43. DOI:10.19721/j.cnki.1001-7372.2016.01.005. (in Chinese)
[16] 中华人民共和国交通部. JTG C30—2002公路工程水文勘测设计规范[S].北京:人民交通出版社,2002.
[17] Sumer B M, Fredsøe J. Wave scour around a large vertical circular cylinder[J].Journal of Waterway, Port, Coastal, and Ocean Engineering, 2001, 127(3): 125-134. DOI:10.1061/(asce)0733-950x(2001)127:3(125).
[18] Richardson E V, Davis S R. Evaluating scour at bridges[R]. Washington, DC, USA: Federal Highway Administration Office of Technology Applications, 1995.
[19] Arneson L A. Evaluating scour at bridges[R]. Washington, DC, USA: Federal Highway Administration, 2013.
[20] Raaijmakers T, Rudolph D. Time-dependent scour development under combined current and waves conditions-laboratory experiments with online monitoring technique[C]//Proceedings of 4th International Conference on Scour and Erosion. Tokyo, Japan, 2008: 152-161.
[21] Whitehouse R. Scour at marine structures: A manual for practical applications[M]. London: Thomas Telford, 1998: 35-44.
[22] 张维佳, 刘鹤年.水力学[M]. 北京:中国建筑工业出版社,2015: 81-88.
[23] Qi W G, Gao F P. Equilibrium scour depth at offshore monopile foundation in combined waves and current[J].Science China Technological Sciences, 2014, 57(5): 1030-1039. DOI:10.1007/s11431-014-5538-9.
[24] Shen H W, Schneider V R, Karaki S. Local scour around bridge piers[J]. Journal of the Hydraulics Division, 1969, 95(6): 1919-1940.
[25] Ettema R, Kirkil G, Muste M. Similitude of large-scale turbulence in experiments on local scour at cylinders[J]. Journal of Hydraulic Engineering, 2006, 132(1): 33-40. DOI:10.1061/(asce)0733-9429(2006)132:1(33).
[26] Debnath K, Chaudhuri S. Laboratory experiments on local scour around cylinder for clay and clay-sand mixed beds[J].Engineering Geology, 2010, 111(1/2/3/4): 51-61. DOI:10.1016/j.enggeo.2009.12.003.
[27] Nielsen A W, Hansen E A. Time-varying wave and current-induced scour around offshore wind turbines[C]//ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering. San Diego, CA, USA, 2007: 399-408. DOI:10.1115/OMAE2007-29028.
[28] Melville B W, Chiew Y M. Time scale for local scour at bridge piers[J].Journal of Hydraulic Engineering, 1999, 125(1): 59-65. DOI:10.1061/(asce)0733-9429(1999)125:1(59).
[29] 李林普, 张日向. 波流作用下大直径圆柱体基底周围最大冲刷深度预测[J]. 大连理工大学学报, 2003, 43(5): 676-680.
  Li L P, Zhang R X. Forecast of the maximum scour depth around vertical cylinders of large diameter combined wave and current action[J].Journal of Dalian University of Technology, 2003, 43(5): 676-680.(in Chinese)
[30] Sheppard D M, Melville B, Demir H. Evaluation of existing equations for local scour at bridge piers[J].Journal of Hydraulic Engineering, 2014, 140(1): 14-23. DOI:10.1061/(asce)hy.1943-7900.0000800.

备注/Memo

备注/Memo:
收稿日期: 2020-01-13.
作者简介: 杜硕(1996—),男,硕士生;戴国亮(联系人),男,博士,教授,博士生导师,daigl@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51678145,51878160)、江苏省基础研究计划(自然科学基金)资助项目(BK20180155)、中国华能集团有限公司科技资助项目(HNKJ19-H17).
引用本文: 杜硕,戴国亮,高鲁超,等.波流作用近海风机单桩基础局部冲刷深度预测[J].东南大学学报(自然科学版),2020,50(4):616-622. DOI:10.3969/j.issn.1001-0505.2020.04.003.
更新日期/Last Update: 2020-07-20