[1]刘路路,蔡国军,刘松玉.废旧轮胎-砂颗粒轻质填料导热特性及预测模型[J].东南大学学报(自然科学版),2020,50(4):658-666.[doi:10.3969/j.issn.1001-0505.2020.04.009]
 Liu Lulu,Cai Guojun,Liu Songyu.Thermal conductivity and prediction model of waste tire-sand particle lightweight filler[J].Journal of Southeast University (Natural Science Edition),2020,50(4):658-666.[doi:10.3969/j.issn.1001-0505.2020.04.009]
点击复制

废旧轮胎-砂颗粒轻质填料导热特性及预测模型()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第4期
页码:
658-666
栏目:
土木工程
出版日期:
2020-07-20

文章信息/Info

Title:
Thermal conductivity and prediction model of waste tire-sand particle lightweight filler
作者:
刘路路蔡国军刘松玉
东南大学岩土工程研究所, 南京 211189
Author(s):
Liu Lulu Cai Guojun Liu Songyu
Institute of Geotechnical Engineering, Southeast University, Nanjing 211189, China
关键词:
废旧轮胎-砂颗粒 轻质填料 热学特性 预测模型
Keywords:
waste tire-sand particles lightweight filler thermal characteristics prediction model
分类号:
TU43
DOI:
10.3969/j.issn.1001-0505.2020.04.009
摘要:
为了研究废旧轮胎-砂颗粒轻质填料的导热系数特性,降低废旧轮胎颗粒对地下散热构筑物的热量累积影响,采用室内热探针测试技术与电镜扫描技术,分析了含砂率、含水率、干密度和粒径对废旧轮胎-砂轻质填料导热系数的影响以及废旧轮胎-砂轻质填料的微观传热机理,提出了简化的废旧轮胎-砂导热系数多元线性回归预测模型.结果表明:废旧轮胎-砂轻质填料导热系数随含水率增加可分为增长区和稳定区,且临界含水率达到6%;砂粒径越大,旧轮胎-砂轻质填料导热系数越大;当含砂率小于40%时,废旧轮胎-砂轻质填料导热系数随干密度增加呈抛物线增长;当含砂率大于60%时,废旧轮胎-砂轻质填料导热系数随干密度增加呈线性增长;废旧轮胎-砂颗粒轻质填料的主导传热连,随着含含砂量的增加,由橡胶-橡胶传热链向砂-砂传热链转变.废旧轮胎-砂颗粒轻质填料导热系数回归预测模型具有良好的精度,能够为轻质回填料中的热构筑物周围温度场的分析提供更加合理的热学参数.
Abstract:
In order to study the thermal conductivity of waste tire-sand lightweight fillers and reduce the influence of waste tire particles on the heat accumulation of underground heat dissipating structures, the effects of sand content, moisture content, dry density and particle size on the thermal conductivity of waste tire-sand lightweight fillers and the micro-heat transfer mechanism were analyzed by the indoor thermal probe test technology and electron microscope scanning technology. A simplified multivariate linear regression model for predicting the thermal conductivity of waste tire-sand lightweight fillers was proposed. The results show that the thermal conductivity of waste tire-sand lightweight filler can be divided into the growth zone and stable zone with the increase in moisture content, and the critical moisture content reaches 6%; the larger the sand size, the higher the thermal conductivity of waste tire-sand lightweight filler;when the sand content is less than 40%, the thermal conductivity of waste tire-sand lightweight filler is observed to be a parabolic increase with the increase in dry density; when the sand content exceeds 60%, the thermal conductivity of waste tire-sand lightweight filler is observed to be a linear increase with the increase in dry density;the dominant heat transfer chain of the waste tire-sand particle lightweight filler changes from the rubber-rubber heat transfer chain to the sand-sand heat transfer chain with the increase in sand content. The regression prediction model of thermal conductivity of the waste tire-sand particle lightweight filler shows good accuracy, which can provide more reasonable thermal parameters for the analysis of temperature field around thermal structures in lightweight backfills.

参考文献/References:

[1] Zhang T, Cai G J, Duan W H. Strength and microstructure characteristics of the recycled rubber tire-sand mixtures as lightweight backfill[J].Environmental Science and Pollution Research, 2018, 25(4): 3872-3883. DOI:10.1007/s11356-017-0742-3.
[2] Yoon Y W, Heo S B, Kim K S. Geotechnical performance of waste tires for soil reinforcement from chamber tests[J].Geotextiles and Geomembranes, 2008, 26(1): 100-107. DOI:10.1016/j.geotexmem.2006.10.004.
[3] Zornberg J G, Cabral A R, Viratjandr C. Behaviour of tire shred-sand mixtures[J].Canadian Geotechnical Journal, 2004, 41(2): 227-241. DOI:10.1139/t03-086.
[4] Ambarakonda P, Mohanty S, Shaik R. Utilization of quarry waste and granulated rubber mix as lightweight backfill material[J].Journal of Hazardous, Toxic, and Radioactive Waste, 2019, 23(4): 06019001. DOI:10.1061/(asce)hz.2153-5515.0000455.
[5] Cai G J, Zhang T, Puppala A J, et al. Thermal characterization and prediction model of typical soils in Nanjing area of China[J].Engineering Geology, 2015, 191: 23-30. DOI:10.1016/j.enggeo.2015.03.005.
[6] Zhang T, Cai G J, Liu S Y, et al. Investigation on thermal characteristics and prediction models of soils[J].International Journal of Heat and Mass Transfer, 2017, 106: 1074-1086. DOI:10.1016/j.ijheatmasstransfer.2016.10.084.
[7] Liu X Y, Cai G J, Liu L L, et al. Thermo-hydro-mechanical properties of bentonite-sand-graphite-polypropylene fiber mixtures as buffer materials for a high-level radioactive waste repository[J].International Journal of Heat and Mass Transfer, 2019, 141: 981-994. DOI:10.1016/j.ijheatmasstransfer.2019.07.015.
[8] Liu L L, Cai G J, Liu X Y, et al. Evaluation of thermal-mechanical properties of quartz sand-bentonite-carbon fiber mixtures as the borehole backfilling material in ground source heat pump[J].Energy and Buildings, 2019, 202: 109407. DOI:10.1016/j.enbuild.2019.109407.
[9] Ling Z Y, Chen J J, Xu T, et al. Thermal conductivity of an organic phase change material/expanded graphite composite across the phase change temperature range and a novel thermal conductivity model[J].Energy Conversion and Management, 2015, 102: 202-208. DOI:10.1016/j.enconman.2014.11.040.
[10] Haigh S K. Thermal conductivity of sands[J].Géotechnique, 2012, 62(7): 617-625. DOI:10.1680/geot.11.p.043.
[11] de Vries D A, Philip J R. Soil heat flux, thermal conductivity, and the null-alignment method[J].Soil Science Society of America Journal, 1986, 50(1): 12-18. DOI:10.2136/sssaj1986.03615995005000010003x.
[12] Smits K M, Sakaki T, Limsuwat A, et al. Thermal conductivity of sands under varying moisture and porosity in drainage-wetting cycles[J]. Vadose Zone Journal, 2010, 9(1): 172. DOI:10.2136/vzj2009.0095.
[13] Hiraiwa Y, Kasubuchi T. Temperature dependence of thermal conductivity of soil over a wide range of temperature(5-75 ℃)[J]. European Journal of Soil Science, 2000, 51(2): 211-218. DOI:10.1046/j.1365-2389.2000.00301.x.
[14] 徐云山, 孙德安, 曾召田, 等. 膨润土热传导性能的温度效应[J]. 岩土力学, 2020, 41(1): 39-45, 56. DOI:10.16285/j.rsm.2018.2295.
Xu Y S, Sun D A, Zeng Z T, et al. Temperature effect on thermal conductivity of bentonites[J].Rock and Soil Mechanics, 2020, 41(1): 39-45, 56. DOI:10.16285/j.rsm.2018.2295. (in Chinese)
[15] Zhang N, Wang Z Y. Review of soil thermal conductivity and predictive models[J]. International Journal of Thermal Sciences, 2017, 117: 172-183. DOI:10.1016/j.ijthermalsci.2017.03.013.
[16] 张涛, 蔡国军, 刘松玉, 等. 橡胶-砂颗粒混合物强度特性及微观机制试验研究[J]. 岩土工程学报, 2017, 39(6): 1082-1088.
  Zhang T, Cai G J, Liu S Y, et al. Experimental study on strength characteristics and micromechanism of rubber-sand mixtures[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1082-1088.(in Chinese)
[17] Madhusudhan B R, Boominathan A, Banerjee S. Factors affecting strength and stiffness of dry sand-rubber tire shred mixtures[J].Geotechnical and Geological Engineering, 2019, 37(4): 2763-2780. DOI:10.1007/s10706-018-00792-y.
[18] Rezazadeh Eidgahee D, Haddad A, Naderpour H. Evaluation of shear strength parameters of granulated waste rubber using artificial neural networks and group method of data handling[J]. Scientia Iranica, 2019, 26(6): 3233-3244.DOI:10.24200/SCI.2018.5663.1408.
[19] 辛凌, 刘汉龙, 沈扬, 等. 废弃轮胎橡胶颗粒轻质混合土无侧限抗压强度试验[J]. 解放军理工大学学报(自然科学版), 2010, 11(1): 79-83. DOI:10.3969/j.issn.1009-3443.2010.01.014.
Xin L, Liu H L, Shen Y, et al.Unconfined compressive test of lightweight soil mixed with rubber chips of scrap tires[J]. Journal of PLA University of Science and Technology(Natural Science Edition), 2010, 11(1): 79-83. DOI:10.3969/j.issn.1009-3443.2010.01.014. (in Chinese)
[20] 孔德森, 陈文杰, 贾腾, 等. 动荷载作用下RST轻质土变形特性的试验研究[J]. 岩土工程学报, 2013, 35(S2): 874-878.
  Kong D S, Chen W J, Jia T, et al. Deformation characteristics of RST lightweight soils under dynamic loads[J].Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 874-878.(in Chinese)
[21] Zain-Ul-Abdein M, Azeem S, Shah S M. Computational investigation of factors affecting thermal conductivity in a particulate filled composite using finite element method[J].International Journal of Engineering Science, 2012, 56: 86-98. DOI:10.1016/j.ijengsci.2012.03.035.
[22] Johansen O. Thermal conductivity of soils[D].Dragvold, Norway: University of Trondheim, 1977.
[23] Woodside W, Messmer J H. Thermal conductivity of porous media. Ⅰ. Unconsolidated sands[J].Journal of Applied Physics, 1961, 32(9): 1688-1699. DOI:10.1063/1.1728419.
[24] Tong F G, Jing L R, Zimmerman R W. An effective thermal conductivity model of geological porous media for coupled thermo-hydro-mechanical systems with multiphase flow[J].International Journal of Rock Mechanics and Mining Sciences, 2009, 46(8): 1358-1369. DOI:10.1016/j.ijrmms.2009.04.010.
[25] Kasubuchi T. Heat conduction model of saturated soil and estimation of thermal conductivity of soil solid phase[J].Soil Science, 1984, 138(3): 240-247. DOI:10.1097/00010694-198409000-00008.
[26] Midttomme K, Roaldset E. The effect of grain size on thermal conductivity of quartz sands and silts[J]. Petroleum Geoscience, 1998, 4(2):165-172. DOI:10.1144/petgeo.4.2.165.
[27] Côté J, Konrad J M. A generalized thermal conductivity model for soils and construction materials[J]. Canadian Geotechnical Journal, 2005, 42(2): 443-458. DOI:10.1139/t04-106.
[28] Lu S, Ren T S, Gong Y S, et al. An improved model for predicting soil thermal conductivity from water content at room temperature[J].Soil Science Society of America Journal, 2007, 71(1): 8-14. DOI:10.2136/sssaj2006.0041.
[29] Becker B R, Misra A, Fricke B A. Development of correlations for soil thermal conductivity[J].International Communications in Heat and Mass Transfer, 1992, 19(1): 59-68. DOI:10.1016/0735-1933(92)90064-o.
[30] Bachmann J, Horton R, Ren T, et al. Comparison of the thermal properties of four wettable and four water-repellent soils[J].Soil Science Society of America Journal, 2001, 65(6): 1675-1679. DOI:10.2136/sssaj2001.1675.
[31] Courant R, Friedrichs K, Lewy H. On the partial difference equations of mathematical physics[J].IBM Journal of Research and Development, 1967, 11(2): 215-234. DOI:10.1147/rd.112.0215.
[32] Chen S X. Thermal conductivity of sands[J].Heat and Mass Transfer, 2008, 44(10): 1241-1246. DOI:10.1007/s00231-007-0357-1.
[33] Tokoro T, Ishikawa T, Shirai S, et al. Estimation methods for thermal conductivity of sandy soil with electrical characteristics[J].Soils and Foundations, 2016, 56(5): 927-936. DOI:10.1016/j.sandf.2016.08.016.
[34] Barry-Macaulay D, Bouazza A, Singh R M, et al. Thermal conductivity of soils and rocks from the Melbourne(Australia)region[J].Engineering Geology, 2013, 164: 131-138. DOI:10.1016/j.enggeo.2013.06.014.
[35] Zhang N, Yu X B, Wang X L. Use of a thermo-TDR probe to measure sand thermal conductivity dryout curves(TCDCs)and model prediction[J].International Journal of Heat and Mass Transfer, 2017, 115: 1054-1064. DOI:10.1016/j.ijheatmasstransfer.2017.08.102.
[36] Ochsner T E, Horton R, Ren T S. A new perspective on soil thermal properties[J].Soil Science Society of America Journal, 2001, 65(6): 1641-1647. DOI:10.2136/sssaj2001.1641.
[37] Gangadhara R M, Singh D N. A generalized relationship to estimate thermal resistivity of soils[J]. Canadian Geotechnical Journal, 1999, 36(4): 767-773. DOI:10.1139/t99-037.
[38] Abdel Kader M M, Abdel-Wehab S M, Helal M A, et al. Evaluation of thermal insulation and mechanical properties of waste rubber/natural rubber composite[J]. HBRC Journal, 2012, 8(1): 69-74. DOI:10.1016/j.hbrcj.2011.11.001.

备注/Memo

备注/Memo:
收稿日期: 2020-01-02.
作者简介: 刘路路(1990—),男,博士生;蔡国军(联系人),男,博士,教授,博士生导师,focuscai@163.com.
基金项目: 国家重点研发计划资助项目(2016YFC0800200)、国家自然科学基金资助项目(41877231,41672294)、江苏省研究生科研创新计划资助项目(KYCX19-0098)、江苏省交通工程建设局科技资助项目(CX-2019GC02)、东南大学优秀博士学位论文培育基金资助项目(YBPY1926).
引用本文: 刘路路,蔡国军,刘松玉.废旧轮胎-砂颗粒轻质填料导热特性及预测模型[J].东南大学学报(自然科学版),2020,50(4):658-666. DOI:10.3969/j.issn.1001-0505.2020.04.009.
更新日期/Last Update: 2020-07-20