参考文献/References:
[1] Zhang T, Cai G J, Duan W H. Strength and microstructure characteristics of the recycled rubber tire-sand mixtures as lightweight backfill[J].Environmental Science and Pollution Research, 2018, 25(4): 3872-3883. DOI:10.1007/s11356-017-0742-3.
[2] Yoon Y W, Heo S B, Kim K S. Geotechnical performance of waste tires for soil reinforcement from chamber tests[J].Geotextiles and Geomembranes, 2008, 26(1): 100-107. DOI:10.1016/j.geotexmem.2006.10.004.
[3] Zornberg J G, Cabral A R, Viratjandr C. Behaviour of tire shred-sand mixtures[J].Canadian Geotechnical Journal, 2004, 41(2): 227-241. DOI:10.1139/t03-086.
[4] Ambarakonda P, Mohanty S, Shaik R. Utilization of quarry waste and granulated rubber mix as lightweight backfill material[J].Journal of Hazardous, Toxic, and Radioactive Waste, 2019, 23(4): 06019001. DOI:10.1061/(asce)hz.2153-5515.0000455.
[5] Cai G J, Zhang T, Puppala A J, et al. Thermal characterization and prediction model of typical soils in Nanjing area of China[J].Engineering Geology, 2015, 191: 23-30. DOI:10.1016/j.enggeo.2015.03.005.
[6] Zhang T, Cai G J, Liu S Y, et al. Investigation on thermal characteristics and prediction models of soils[J].International Journal of Heat and Mass Transfer, 2017, 106: 1074-1086. DOI:10.1016/j.ijheatmasstransfer.2016.10.084.
[7] Liu X Y, Cai G J, Liu L L, et al. Thermo-hydro-mechanical properties of bentonite-sand-graphite-polypropylene fiber mixtures as buffer materials for a high-level radioactive waste repository[J].International Journal of Heat and Mass Transfer, 2019, 141: 981-994. DOI:10.1016/j.ijheatmasstransfer.2019.07.015.
[8] Liu L L, Cai G J, Liu X Y, et al. Evaluation of thermal-mechanical properties of quartz sand-bentonite-carbon fiber mixtures as the borehole backfilling material in ground source heat pump[J].Energy and Buildings, 2019, 202: 109407. DOI:10.1016/j.enbuild.2019.109407.
[9] Ling Z Y, Chen J J, Xu T, et al. Thermal conductivity of an organic phase change material/expanded graphite composite across the phase change temperature range and a novel thermal conductivity model[J].Energy Conversion and Management, 2015, 102: 202-208. DOI:10.1016/j.enconman.2014.11.040.
[10] Haigh S K. Thermal conductivity of sands[J].Géotechnique, 2012, 62(7): 617-625. DOI:10.1680/geot.11.p.043.
[11] de Vries D A, Philip J R. Soil heat flux, thermal conductivity, and the null-alignment method[J].Soil Science Society of America Journal, 1986, 50(1): 12-18. DOI:10.2136/sssaj1986.03615995005000010003x.
[12] Smits K M, Sakaki T, Limsuwat A, et al. Thermal conductivity of sands under varying moisture and porosity in drainage-wetting cycles[J]. Vadose Zone Journal, 2010, 9(1): 172. DOI:10.2136/vzj2009.0095.
[13] Hiraiwa Y, Kasubuchi T. Temperature dependence of thermal conductivity of soil over a wide range of temperature(5-75 ℃)[J]. European Journal of Soil Science, 2000, 51(2): 211-218. DOI:10.1046/j.1365-2389.2000.00301.x.
[14] 徐云山, 孙德安, 曾召田, 等. 膨润土热传导性能的温度效应[J]. 岩土力学, 2020, 41(1): 39-45, 56. DOI:10.16285/j.rsm.2018.2295.
Xu Y S, Sun D A, Zeng Z T, et al. Temperature effect on thermal conductivity of bentonites[J].Rock and Soil Mechanics, 2020, 41(1): 39-45, 56. DOI:10.16285/j.rsm.2018.2295. (in Chinese)
[15] Zhang N, Wang Z Y. Review of soil thermal conductivity and predictive models[J]. International Journal of Thermal Sciences, 2017, 117: 172-183. DOI:10.1016/j.ijthermalsci.2017.03.013.
[16] 张涛, 蔡国军, 刘松玉, 等. 橡胶-砂颗粒混合物强度特性及微观机制试验研究[J]. 岩土工程学报, 2017, 39(6): 1082-1088.
Zhang T, Cai G J, Liu S Y, et al. Experimental study on strength characteristics and micromechanism of rubber-sand mixtures[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1082-1088.(in Chinese)
[17] Madhusudhan B R, Boominathan A, Banerjee S. Factors affecting strength and stiffness of dry sand-rubber tire shred mixtures[J].Geotechnical and Geological Engineering, 2019, 37(4): 2763-2780. DOI:10.1007/s10706-018-00792-y.
[18] Rezazadeh Eidgahee D, Haddad A, Naderpour H. Evaluation of shear strength parameters of granulated waste rubber using artificial neural networks and group method of data handling[J]. Scientia Iranica, 2019, 26(6): 3233-3244.DOI:10.24200/SCI.2018.5663.1408.
[19] 辛凌, 刘汉龙, 沈扬, 等. 废弃轮胎橡胶颗粒轻质混合土无侧限抗压强度试验[J]. 解放军理工大学学报(自然科学版), 2010, 11(1): 79-83. DOI:10.3969/j.issn.1009-3443.2010.01.014.
Xin L, Liu H L, Shen Y, et al.Unconfined compressive test of lightweight soil mixed with rubber chips of scrap tires[J]. Journal of PLA University of Science and Technology(Natural Science Edition), 2010, 11(1): 79-83. DOI:10.3969/j.issn.1009-3443.2010.01.014. (in Chinese)
[20] 孔德森, 陈文杰, 贾腾, 等. 动荷载作用下RST轻质土变形特性的试验研究[J]. 岩土工程学报, 2013, 35(S2): 874-878.
Kong D S, Chen W J, Jia T, et al. Deformation characteristics of RST lightweight soils under dynamic loads[J].Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 874-878.(in Chinese)
[21] Zain-Ul-Abdein M, Azeem S, Shah S M. Computational investigation of factors affecting thermal conductivity in a particulate filled composite using finite element method[J].International Journal of Engineering Science, 2012, 56: 86-98. DOI:10.1016/j.ijengsci.2012.03.035.
[22] Johansen O. Thermal conductivity of soils[D].Dragvold, Norway: University of Trondheim, 1977.
[23] Woodside W, Messmer J H. Thermal conductivity of porous media. Ⅰ. Unconsolidated sands[J].Journal of Applied Physics, 1961, 32(9): 1688-1699. DOI:10.1063/1.1728419.
[24] Tong F G, Jing L R, Zimmerman R W. An effective thermal conductivity model of geological porous media for coupled thermo-hydro-mechanical systems with multiphase flow[J].International Journal of Rock Mechanics and Mining Sciences, 2009, 46(8): 1358-1369. DOI:10.1016/j.ijrmms.2009.04.010.
[25] Kasubuchi T. Heat conduction model of saturated soil and estimation of thermal conductivity of soil solid phase[J].Soil Science, 1984, 138(3): 240-247. DOI:10.1097/00010694-198409000-00008.
[26] Midttomme K, Roaldset E. The effect of grain size on thermal conductivity of quartz sands and silts[J]. Petroleum Geoscience, 1998, 4(2):165-172. DOI:10.1144/petgeo.4.2.165.
[27] Côté J, Konrad J M. A generalized thermal conductivity model for soils and construction materials[J]. Canadian Geotechnical Journal, 2005, 42(2): 443-458. DOI:10.1139/t04-106.
[28] Lu S, Ren T S, Gong Y S, et al. An improved model for predicting soil thermal conductivity from water content at room temperature[J].Soil Science Society of America Journal, 2007, 71(1): 8-14. DOI:10.2136/sssaj2006.0041.
[29] Becker B R, Misra A, Fricke B A. Development of correlations for soil thermal conductivity[J].International Communications in Heat and Mass Transfer, 1992, 19(1): 59-68. DOI:10.1016/0735-1933(92)90064-o.
[30] Bachmann J, Horton R, Ren T, et al. Comparison of the thermal properties of four wettable and four water-repellent soils[J].Soil Science Society of America Journal, 2001, 65(6): 1675-1679. DOI:10.2136/sssaj2001.1675.
[31] Courant R, Friedrichs K, Lewy H. On the partial difference equations of mathematical physics[J].IBM Journal of Research and Development, 1967, 11(2): 215-234. DOI:10.1147/rd.112.0215.
[32] Chen S X. Thermal conductivity of sands[J].Heat and Mass Transfer, 2008, 44(10): 1241-1246. DOI:10.1007/s00231-007-0357-1.
[33] Tokoro T, Ishikawa T, Shirai S, et al. Estimation methods for thermal conductivity of sandy soil with electrical characteristics[J].Soils and Foundations, 2016, 56(5): 927-936. DOI:10.1016/j.sandf.2016.08.016.
[34] Barry-Macaulay D, Bouazza A, Singh R M, et al. Thermal conductivity of soils and rocks from the Melbourne(Australia)region[J].Engineering Geology, 2013, 164: 131-138. DOI:10.1016/j.enggeo.2013.06.014.
[35] Zhang N, Yu X B, Wang X L. Use of a thermo-TDR probe to measure sand thermal conductivity dryout curves(TCDCs)and model prediction[J].International Journal of Heat and Mass Transfer, 2017, 115: 1054-1064. DOI:10.1016/j.ijheatmasstransfer.2017.08.102.
[36] Ochsner T E, Horton R, Ren T S. A new perspective on soil thermal properties[J].Soil Science Society of America Journal, 2001, 65(6): 1641-1647. DOI:10.2136/sssaj2001.1641.
[37] Gangadhara R M, Singh D N. A generalized relationship to estimate thermal resistivity of soils[J]. Canadian Geotechnical Journal, 1999, 36(4): 767-773. DOI:10.1139/t99-037.
[38] Abdel Kader M M, Abdel-Wehab S M, Helal M A, et al. Evaluation of thermal insulation and mechanical properties of waste rubber/natural rubber composite[J]. HBRC Journal, 2012, 8(1): 69-74. DOI:10.1016/j.hbrcj.2011.11.001.