# [1]王增科,赵加祥,徐微,等.一种低信噪比条件下的瞬时频率估计算法[J].东南大学学报(自然科学版),2020,50(4):684-688.[doi:10.3969/j.issn.1001-0505.2020.04.012] 　Wang Zengke,Zhao Jiaxiang,Xu Wei,et al.Instantaneous frequency estimation algorithm in low SNR[J].Journal of Southeast University (Natural Science Edition),2020,50(4):684-688.[doi:10.3969/j.issn.1001-0505.2020.04.012] 点击复制 一种低信噪比条件下的瞬时频率估计算法() 分享到： var jiathis_config = { data_track_clickback: true };

50

2020年第4期

684-688

2020-07-20

## 文章信息/Info

Title:
Instantaneous frequency estimation algorithm in low SNR

1南开大学电子信息与光学工程学院, 天津 300350; 2天津工业大学电子信息与工程学院, 天津 300387
Author(s):
1College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
2School of Electronics and Information Engineering, Tianjin Polytechnic University, Tianjin 300387, China

Keywords:

TN911.7
DOI:
10.3969/j.issn.1001-0505.2020.04.012

Abstract:
To extract the instantaneous frequency(IF)of the signal more effectively under the condition of low signal-to-noise ratio(SNR), an IF estimation algorithm for modified Wigner-Ville distribution(MWVD)was proposed to reduce the estimation error of IF. First, an optimal kernel function was calculated by the kernel function based on the Chebyshev polynomial instead on the Wigner-Ville distribution(WVD). Then, the time-frequency distribution(TFD)was calculated with the optimal kernel function to reduce the impact of cross-terms on the signal. Finally, the IF of the signal was estimated from the TFD by the Viterbi algorithm. Simulation results show that when the SNR is between -15 and -5 dB, the mean square error of the IF estimated by MWVD algorithm is reduced by more than 53% compared with that estimated by the WVD algorithm and the smooth pseudo Wigner-Ville distribution(SPWVD)algorithm, thus reducing the estimation error of the IF. The MWVD algorithm for the IF estimation has better performance in the cases of single-component and multi-component signals.

## 参考文献/References:

[1] Djurovic I. Estimation of sinusoidal frequency-modulated signal parameters in high-noise environment[J]. Signal, Image and Video Processing, 2017, 11(8): 1537-1541. DOI:10.1007/s11760-017-1117-4.
[2] Jiang L, Li L, Zhao G Q, et al. Instantaneous frequency estimation of nonlinear frequency-modulated signals under strong noise environment[J]. Circuits, Systems, and Signal Processing, 2016, 35(10): 3734-3744. DOI:10.1007/s00034-015-0230-2.
[3] 古培,王斌.改进对称共生矩阵的跳频信号盲提取方法[J].西安电子科技大学学报,2015,42(3):129-134.
Gu P, Wang B. FH signal extraction using the improved symmetric co-occurrence matrix[J].Journal of Xidian University, 2015, 42(3): 129-134.(in Chinese)
[4] Liu L B, Luo M K, Lai L. Instantaneous frequency estimation based on the Wigner-ville distribution associated with linear canonical transform(WDL)[J].Chinese Journal of Electronics, 2018, 27(1): 123-127. DOI:10.1049/cje.2017.07.009.
[5] 苏小凡,肖瑞,朱明哲.一种多分量调频信号瞬时频率估计方法[J].西安电子科技大学学报,2019,46(1):51-56. DOI:10.19665/j.issn1001-2400.2019.01.009.
Su X F, Xiao R, Zhu M Z. Method for IF estimation of multicomponent FM signals[J].Journal of Xidian University, 2019, 46(1): 51-56. DOI:10.19665/j.issn1001-2400.2019.01.009. (in Chinese)
[6] Zhang H J, Bi G A, Yang W, et al. IF estimation of FM signals based on time-frequency image[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(1): 326-343. DOI:10.1109/taes.2014.130554.
[7] Wu Y S, Li X K, Wang Y. Extraction and classification of acoustic scattering from underwater target based on Wigner-Ville distribution[J].Applied Acoustics, 2018, 138: 52-59. DOI:10.1016/j.apacoust.2018.03.026.
[8] Shui P L, Shang H Y, Zhao Y B. Instantaneous frequency estimation based on directionally smoothed pseudo-Wigner-Ville distribution bank[J]. IET Radar, Sonar and Navigation, 2007, 1(4): 317-325. DOI:10.1049/rsn:20060123.
[9] Jeong J, Williams W J. Kernel design for reduced interference distributions[J]. IEEE Transactions on Signal Processing, 1992, 40(2): 402-412. DOI:10.1109/78.124950.
[10] Zuo L, Li M, Xia X G. New smoothed time-frequency rate representations for suppressing cross terms[J]. IEEE Transactions on Signal Processing, 2017, 65(3): 733-747. DOI:10.1109/tsp.2016.2625270.
[11] Djurovic I, Stankoic L. Influence of high noise on the instantaneous frequency estimation using quadratic time-frequency distributions [J]. IEEE Signal Processing Letters, 2000, 7(11): 317-319. DOI:10.1109/97.873569.
[12] Djurovic I, Stankovic L. An algorithm for the Wigner distribution based instantaneous frequency estimation in a high noise environment[J].Signal Processing, 2004, 84(3): 631-643. DOI:10.1016/j.sigpro.2003.12.006.
[13] Baraniuk R G, Jones D L. Signal-dependent time-frequency analysis using a radially Gaussian kernel[J].Signal Processing, 1993, 32(3): 263-284. DOI:10.1016/0165-1684(93)90001-q.