[1]王增科,赵加祥,徐微,等.一种低信噪比条件下的瞬时频率估计算法[J].东南大学学报(自然科学版),2020,50(4):684-688.[doi:10.3969/j.issn.1001-0505.2020.04.012]
 Wang Zengke,Zhao Jiaxiang,Xu Wei,et al.Instantaneous frequency estimation algorithm in low SNR[J].Journal of Southeast University (Natural Science Edition),2020,50(4):684-688.[doi:10.3969/j.issn.1001-0505.2020.04.012]
点击复制

一种低信噪比条件下的瞬时频率估计算法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第4期
页码:
684-688
栏目:
信息与通信工程
出版日期:
2020-07-20

文章信息/Info

Title:
Instantaneous frequency estimation algorithm in low SNR
作者:
王增科1赵加祥1徐微2孙桂玲1
1南开大学电子信息与光学工程学院, 天津 300350; 2天津工业大学电子信息与工程学院, 天津 300387
Author(s):
Wang Zengke1 Zhao Jiaxiang1 Xu Wei2 Sun Guiling1
1College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
2School of Electronics and Information Engineering, Tianjin Polytechnic University, Tianjin 300387, China
关键词:
瞬时频率 低信噪比 核函数 维特比算法
Keywords:
instantaneous frequency low signal-to-noise ratio(SNR) kernel function Viterbi algorithm
分类号:
TN911.7
DOI:
10.3969/j.issn.1001-0505.2020.04.012
摘要:
为了在低信噪比条件下更有效地提取信号的瞬时频率,提出了一种改进魏格纳-维勒分布的瞬时频率估计算法来降低瞬时频率的估计误差.首先,采用基于切比雪夫多项式的核函数代替魏格纳-维勒分布的核函数,根据信号计算最优核函数.然后用该最优核函数计算信号的时频分布,以减小信号交叉项的影响.最后,采用维特比算法从时频分布中估计信号的瞬时频率.仿真结果表明,信噪比为-15~-5 dB条件下,改进魏格纳-维勒分布算法瞬时频率估计值的均方误差相比于魏格纳-维勒分布算法和平滑伪魏格纳-维勒分布算法减小超过53%,有效降低了瞬时频率估计误差.在单分量信号和多分量信号情况下,改进魏格纳-维勒分布算法能得到性能更优的瞬时频率估计值.
Abstract:
To extract the instantaneous frequency(IF)of the signal more effectively under the condition of low signal-to-noise ratio(SNR), an IF estimation algorithm for modified Wigner-Ville distribution(MWVD)was proposed to reduce the estimation error of IF. First, an optimal kernel function was calculated by the kernel function based on the Chebyshev polynomial instead on the Wigner-Ville distribution(WVD). Then, the time-frequency distribution(TFD)was calculated with the optimal kernel function to reduce the impact of cross-terms on the signal. Finally, the IF of the signal was estimated from the TFD by the Viterbi algorithm. Simulation results show that when the SNR is between -15 and -5 dB, the mean square error of the IF estimated by MWVD algorithm is reduced by more than 53% compared with that estimated by the WVD algorithm and the smooth pseudo Wigner-Ville distribution(SPWVD)algorithm, thus reducing the estimation error of the IF. The MWVD algorithm for the IF estimation has better performance in the cases of single-component and multi-component signals.

参考文献/References:

[1] Djurovic I. Estimation of sinusoidal frequency-modulated signal parameters in high-noise environment[J]. Signal, Image and Video Processing, 2017, 11(8): 1537-1541. DOI:10.1007/s11760-017-1117-4.
[2] Jiang L, Li L, Zhao G Q, et al. Instantaneous frequency estimation of nonlinear frequency-modulated signals under strong noise environment[J]. Circuits, Systems, and Signal Processing, 2016, 35(10): 3734-3744. DOI:10.1007/s00034-015-0230-2.
[3] 古培,王斌.改进对称共生矩阵的跳频信号盲提取方法[J].西安电子科技大学学报,2015,42(3):129-134.
  Gu P, Wang B. FH signal extraction using the improved symmetric co-occurrence matrix[J].Journal of Xidian University, 2015, 42(3): 129-134.(in Chinese)
[4] Liu L B, Luo M K, Lai L. Instantaneous frequency estimation based on the Wigner-ville distribution associated with linear canonical transform(WDL)[J].Chinese Journal of Electronics, 2018, 27(1): 123-127. DOI:10.1049/cje.2017.07.009.
[5] 苏小凡,肖瑞,朱明哲.一种多分量调频信号瞬时频率估计方法[J].西安电子科技大学学报,2019,46(1):51-56. DOI:10.19665/j.issn1001-2400.2019.01.009.
Su X F, Xiao R, Zhu M Z. Method for IF estimation of multicomponent FM signals[J].Journal of Xidian University, 2019, 46(1): 51-56. DOI:10.19665/j.issn1001-2400.2019.01.009. (in Chinese)
[6] Zhang H J, Bi G A, Yang W, et al. IF estimation of FM signals based on time-frequency image[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(1): 326-343. DOI:10.1109/taes.2014.130554.
[7] Wu Y S, Li X K, Wang Y. Extraction and classification of acoustic scattering from underwater target based on Wigner-Ville distribution[J].Applied Acoustics, 2018, 138: 52-59. DOI:10.1016/j.apacoust.2018.03.026.
[8] Shui P L, Shang H Y, Zhao Y B. Instantaneous frequency estimation based on directionally smoothed pseudo-Wigner-Ville distribution bank[J]. IET Radar, Sonar and Navigation, 2007, 1(4): 317-325. DOI:10.1049/rsn:20060123.
[9] Jeong J, Williams W J. Kernel design for reduced interference distributions[J]. IEEE Transactions on Signal Processing, 1992, 40(2): 402-412. DOI:10.1109/78.124950.
[10] Zuo L, Li M, Xia X G. New smoothed time-frequency rate representations for suppressing cross terms[J]. IEEE Transactions on Signal Processing, 2017, 65(3): 733-747. DOI:10.1109/tsp.2016.2625270.
[11] Djurovic I, Stankoic L. Influence of high noise on the instantaneous frequency estimation using quadratic time-frequency distributions [J]. IEEE Signal Processing Letters, 2000, 7(11): 317-319. DOI:10.1109/97.873569.
[12] Djurovic I, Stankovic L. An algorithm for the Wigner distribution based instantaneous frequency estimation in a high noise environment[J].Signal Processing, 2004, 84(3): 631-643. DOI:10.1016/j.sigpro.2003.12.006.
[13] Baraniuk R G, Jones D L. Signal-dependent time-frequency analysis using a radially Gaussian kernel[J].Signal Processing, 1993, 32(3): 263-284. DOI:10.1016/0165-1684(93)90001-q.

备注/Memo

备注/Memo:
收稿日期: 2019-12-10.
作者简介: 王增科(1990—),男,博士生;赵加祥(联系人),男,博士,教授,博士生导师,zhaojx@nankai.edu.cn.
基金项目: 国家自然科学基金资助项目(61771262).
引用本文: 王增科,赵加祥,徐微,等.一种低信噪比条件下的瞬时频率估计算法[J].东南大学学报(自然科学版),2020,50(4):684-688. DOI:10.3969/j.issn.1001-0505.2020.04.012.
更新日期/Last Update: 2020-07-20