[1]朱海,许飞云,杨会超.基于近场动力学的二维疲劳裂纹扩展模型[J].东南大学学报(自然科学版),2020,50(4):705-711.[doi:10.3969/j.issn.1001-0505.2020.04.015] 　Zhu Hai,Xu Feiyun,Yang Huichao.Two-dimensional fatigue crack propagation model based on peridynamics[J].Journal of Southeast University (Natural Science Edition),2020,50(4):705-711.[doi:10.3969/j.issn.1001-0505.2020.04.015] 点击复制 基于近场动力学的二维疲劳裂纹扩展模型() 分享到： var jiathis_config = { data_track_clickback: true };

50

2020年第4期

705-711

2020-07-20

文章信息/Info

Title:
Two-dimensional fatigue crack propagation model based on peridynamics

Author(s):
School of Mechanical Engineering, Southeast University, Nanjing 211189, China

Keywords:

O346.2
DOI:
10.3969/j.issn.1001-0505.2020.04.015

Abstract:
To simulate the propagation of two-dimensional fatigue crack, a fatigue crack propagation model based on ordinary state-based peridynamics was established. First, based on the ordinary state-based peridynamics model, the bond strain values under the maximum cyclic load were obtained by the dynamic relaxation algorithm, and the position of the crack tip and the damage area were determined by calculating the average bond strain values at material points. Then, during the simulation the number of cyclic broken bonds was set. When the number of broken bonds in damage area reached the number of cyclic broken bonds, the bond strain values were updated and the next step of the calculation was performed. Finally, the fatigue crack propagations of the compact tensile specimen and the plate with central inclined crack were simulated to verify the effectiveness of the model. The results show that with an appropriate number of cyclic broken bonds, the computational efficiency of the model can be improved, and the meticulous crack propagation path and the accurate crack growth rate can be obtained. The crack propagation path and the a-N curve agree with the experimental results.

参考文献/References:

[1] 王建明,刘伟,吕鹤婷.复合型裂纹的扩展路径模拟及疲劳寿命预测[J].哈尔滨工程大学学报,2015,36(8):1086-1091.DOI:10.3969/j.issn.1006-7043.201401056.
Wang J M,Liu W,Lü H T.Numerical simulation of crack propagation path and fatigue life prediction for mixed mode cracks[J].Journal of Harbin Engineering University,2015,36(8):1086-1091.DOI:10.3969/j.issn.1006-7043.201401056. (in Chinese)
[2] 薛彦卓,陆锡奎,王庆,等.冰三点弯曲试验的近场动力学数值模拟[J].哈尔滨工程大学学报,2018,39(4):607-613.DOI:10.11990/jheu.201612027.
Xue Y Z,Lu X K,Wang Q,et al.Simulation of three-point bending test of ice based on peridynamic[J].Journal of Harbin Engineering University,2018,39(4):607-613.DOI:10.11990/jheu.201612027. (in Chinese)
[3] Silling S A.Reformulation of elasticity theory for discontinuities and long-range forces[J].Journal of the Mechanics and Physics of Solids,2000,48(1):175-209.DOI:10.1016/s0022-5096(99)00029-0.
[4] Silling S A,Epton M,Weckner O,et al.Peridynamic states and constitutive modeling[J].Journal of Elasticity,2007,88(2):151-184.DOI:10.1007/s10659-007-9125-1.
[5] Warren T L,Silling S A,Askari A,et al.A non-ordinary state-based peridynamic method to model solid material deformation and fracture[J].International Journal of Solids and Structures,2009,46(5):1186-1195.DOI:10.1016/j.ijsolstr.2008.10.029.
[6] Oterkus E,Guven I,Madenci E.Fatigue failure model with peridynamic theory[C]//2010 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems.Las Vegas,NV,USA,2010:1-6.DOI:10.1109/itherm.2010.5501273.
[7] 石宏顺,钱松荣,张国浩,等.基于近场动力学理论的疲劳断裂分析[J].机械强度,2018,40(4):954-960.DOI:10.16579/j.issn.1001.9669.2018.04.031.
Shi H S,Qian S R,Zhang G H,et al.Analysis of fatigue fracture based on peridynamic[J].Journal of Mechanical Strength,2018,40(4):954-960.DOI:10.16579/j.issn.1001.9669.2018.04.031. (in Chinese)
[8] Silling S A,Askari A.Peridynamic model for fatigue cracking[R].USA:Office of Scientific and Technical Information(OSTI),2014.DOI:10.2172/1160289.
[9] Zhang G F,Le Q A,Loghin A,et al.Validation of a peridynamic model for fatigue cracking[J].Engineering Fracture Mechanics,2016,162:76-94.DOI:10.1016/j.engfracmech.2016.05.008.
[10] Jung J,Seok J.Mixed-mode fatigue crack growth analysis using peridynamic approach[J].International Journal of Fatigue,2017,103:591-603.DOI:10.1016/j.ijfatigue.2017.06.008.
[11] Le Q V,Chan W K,Schwartz J.A two-dimensional ordinary,state-based peridynamic model for linearly elastic solids[J].International Journal for Numerical Methods in Engineering,2014,98(8):547-561.DOI:10.1002/nme.4642.
[12] 刘一鸣,黄丹,秦洪远.混凝土板裂纹扩展的态型近场动力学模拟[J].计算机辅助工程,2016,25(5):53-59.DOI:10.13340/j.cae.2016.05.011.
Liu Y M,Huang D,Qin H Y.State-based peridynamics simulation for crack propagation in concrete slab[J].Computer Aided Engineering,2016,25(5):53-59.DOI:10.13340/j.cae.2016.05.011. (in Chinese)
[13] 赵树力,余音,徐武.疲劳多裂纹扩展的常规态型近场动力学分析[J].哈尔滨工业大学学报,2019,51(4):19-25.DOI:10.11918/j.issn.0367-6234.201709154.
Zhao S L,Yu Y,Xu W.Ordinary state-based peridynamics method for fatigue multi-crack propagation[J].Journal of Harbin Institute of Technology,2019,51(4):19-25.DOI:10.11918/j.issn.0367-6234.201709154. (in Chinese)