参考文献/References:
[1] Heo S, Lee J H. Parallel neural networks for improved nonlinear principal component analysis[J]. Computers & Chemical Engineering, 2019, 127: 1-10. DOI:10.1016/j.compchemeng.2019.05.011.
[2] Ghosh A, Wang G N, Lee J. A novel automata and neural network based fault diagnosis system for PLC controlled manufacturing systems[J]. Computers & Industrial Engineering, 2020, 139: 106188. DOI:10.1016/j.cie.2019.106188.
[3] Hines J W, Uhrig R E, Wrest D J. Use of autoassociative neural networks for signal validation[J]. Journal of Intelligent and Robotic Systems, 1998, 21: 143-154.
[4] Kramer M A. Autoassociative neural networks[J].Computers & Chemical Engineering, 1992, 16(4): 313-328. DOI:10.1016/0098-1354(92)80051-a.
[5] Kramer M A. Nonlinear principal component analysis using autoassociative neural networks[J].AIChE Journal, 1991, 37(2): 233-243. DOI:10.1002/aic.690370209.
[6] Gautam C, Ravi V. Counter propagation auto-associative neural network based data imputation[J]. Information Sciences, 2015, 325: 288-299. DOI:10.1016/j.ins.2015.07.016.
[7] 周建民,张臣臣,张龙,等.基于自联想神经网络与模糊C均值的滚动轴承的性能退化评估[J].机械设计与研究,2019,35(1):96-99. DOI:10.13952/j.cnki.jofmdr.2019.0107.
Zhou J M, Zhang C C, Zhang L, et al. Rolling bearing performance degradation assessment based on AANN-FCM[J]. Machine Design & Research, 2019, 35(1): 96-99. DOI:10.13952/j.cnki.jofmdr.2019.0107. (in Chinese)
[8] Xiao H J, Huang D P, Pan Y P, et al. Fault diagnosis and prognosis of wastewater processes with incomplete data by the auto-associative neural networks and ARMA model[J]. Chemometrics and Intelligent Laboratory Systems, 2017, 161: 96-107. DOI:10.1016/j.chemolab.2016.12.009.
[9] Elnour M, Meskin N, Al-Naemi M. Sensor data validation and fault diagnosis using auto-associative neural network for HVAC systems[J]. Journal of Building Engineering, 2020, 27: 100935. DOI:10.1016/j.jobe.2019.100935.
[10] Shang C, Ji H Q, Huang X L, et al. Generalized grouped contributions for hierarchical fault diagnosis with group Lasso[J]. Control Engineering Practice, 2019, 93: 104193. DOI:10.1016/j.conengprac.2019.104193.
[11] Wang J G, Cai X Z, Yao Y, et al. Statistical process fault isolation using robust nonnegative garrote[J].Journal of the Taiwan Institute of Chemical Engineers, 2020, 107: 24-34. DOI:10.1016/j.jtice.2019.12.004.
[12] Wang K, Chen J, Song Z H. A sparse loading-based contribution method for multivariate control performance diagnosis[J]. Journal of Process Control, 2020, 85: 199-213. DOI:10.1016/j.jprocont.2019.12.001.
[13] Song B, Tan S, Shi H B, et al. Fault detection and diagnosis via standardized k nearest neighbor for multimode process[J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 106: 1-8. DOI:10.1016/j.jtice.2019.09.017.
[14] Marseguerra M, Zoia A. The auto associative neural network in signal analysis: Ⅱ. Application to on-line monitoring of a simulated BWR component[J]. Annals of Nuclear Energy, 2005, 32(11): 1207-1223. DOI:10.1016/j.anucene.2005.03.005.
[15] Najafi M, Gulp C, Langari R. Enhanced auto-associative neural networks for sensor diagnostics(E-AANN)[C]//2004 IEEE International Conference on Fuzzy Systems. Budapest, Hungary, 2004, 1: 453-456. DOI:10.1109/fuzzy.2004.1375771.
[16] Abdella M, Marwala T. The use of genetic algorithms and neural networks to approximate missing data in database[C]//IEEE 3rd International Conference on Computational Cybernetics. Mauritius, 2006: 207-212. DOI:10.1109/icccyb.2005.1511574.
[17] Ravi V, Krishna M. A new online data imputation method based on general regression auto associative neural network[J].Neurocomputing, 2014, 138: 106-113. DOI:10.1016/j.neucom.2014.02.037.
[18] Sadough Vanini Z N, Meskin N, Khorasani K. Multiple-model sensor and components fault diagnosis in gas turbine engines using autoassociative neural networks[J].Journal of Engineering for Gas Turbines and Power, 2014, 136(9): 091603. DOI:10.1115/1.4027215.
[19] Palmé T, Fast M, Thern M. Gas turbine sensor validation through classification with artificial neural networks[J].Applied Energy, 2011, 88(11): 3898-3904. DOI:10.1016/j.apenergy.2011.03.047.
[20] Amirkhani S, Chaibakhsh A, Ghaffari A. Nonlinear robust fault diagnosis of power plant gas turbine using Monte Carlo-based adaptive threshold approach[J/OL].ISA Transactions, 2019 [2019-12-25]. https: //doi.org/10.1016/j.isatra.2019.11.035. DOI:10.1016/j.isatra.2019.11.035.
[21] Alobaid F, Postler R, Ströhle J, et al. Modeling and investigation start-up procedures of a combined cycle power plant[J].Applied Energy, 2008, 85(12): 1173-1189. DOI:10.1016/j.apenergy.2008.03.003.