[1]方光伟,曹玖新.可证安全的无证书多消息同步广播签密方案[J].东南大学学报(自然科学版),2020,50(4):728-740.[doi:10.3969/j.issn.1001-0505.2020.04.018]
 Fang Guangwei,Cao Jiuxin.Provably secure certificateless multi-message synchronous broadcast signcryption scheme[J].Journal of Southeast University (Natural Science Edition),2020,50(4):728-740.[doi:10.3969/j.issn.1001-0505.2020.04.018]
点击复制

可证安全的无证书多消息同步广播签密方案()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第4期
页码:
728-740
栏目:
计算机科学与工程
出版日期:
2020-07-20

文章信息/Info

Title:
Provably secure certificateless multi-message synchronous broadcast signcryption scheme
作者:
方光伟12曹玖新1
1东南大学网络空间安全学院, 南京 211189; 2宜春学院数学与计算机科学学院, 宜春 336000
Author(s):
Fang Guangwei1 2 Cao Jiuxin1
1 School of Cyber Science and Engineering, Southeast University, Nanjing 211189, China
2 School of Mathematics and Computer Science, Yichun University, Yichun 336000, China
关键词:
可证安全 无证书签密 多消息 拉格朗日插值 椭圆曲线
Keywords:
provable security certificateless signcryption multi-message Lagrange interpolating elliptic curve
分类号:
TP309.7
DOI:
10.3969/j.issn.1001-0505.2020.04.018
摘要:
针对现有多接收者签密方案中只能对单消息加密与密文难以定位等问题,需要进一步研究实现发送者在一个逻辑步骤中签密不同的消息并同步安全广播给多个接收者的功能,基于椭圆曲线加密机制,提出了一种无证书多接收者多消息同步广播签密方案.该方案以每个接收者的身份标识作为输入,产生拉格朗日插值多项式系数向量,结合随机数生成密文索引,解决了接收者密文定位问题;结合椭圆曲线循环群上随机元素生成加密密钥,解决了接收者解密密文和身份匿名保护问题.在随机谕言机模型下,基于计算性Diffie-Hellman假设和椭圆曲线离散对数假设,证明了该方案满足机密性和不可伪造性.性能和效率分析表明,在未降低计算效率和通信效率的同时,该方案是安全性能和完整程度最优的方案.
Abstract:
In view of the existing multi-recipient signcryption scheme, which can only encrypt single message and ciphertext is difficult to locate, it is necessary to further study the realization that the sender signs and encrypts different messages in one logical step, and simultaneously and safely broadcasts to multiple receivers. Based on the elliptic curve encryption mechanism, a certificateless multi-receiver multi-message simultaneous broadcast signcryption scheme is proposed. Taking the identity of each receiver as an input, this scheme generates a Lagrange interpolation polynomial coefficient vector, and generates a ciphertext index in combination with a random number, which solves the receiver ciphertext positioning problem. Combined with random elements in an elliptic curve cyclic group, the encryption key is generated, which solves the problems of receiver decryption ciphertext and identity anonymity protection. Under the random oracle model, based on computational Diffie-Hellman hypothesis and elliptic curve discrete logarithm hypothesis, it is proved that the scheme meets confidentiality and unforgeability. The performance and efficiency analysis shows that the proposed scheme is the one with the best security performance and integrity without reducing the computational efficiency and communication efficiency.

参考文献/References:

[1] Zheng Y L. Digital signcryption or how to achieve cost(signature & encryption)? cost(signature)+ cost(encryption)[C]//17th Annual International Cryptology Conference. Santa Barbara, CA, USA, 1997: 165-179. DOI:10.1007/bfb0052234.
[2] Duan S S, Cao Z F. Efficient and provably secure multi-receiver identity-based signcryption[C]//11th Information Security and Privacy. Melbourne, Australia, 2006: 195-206. DOI:10.1007/11780656_17.
[3] Yu Y, Yang B, Huang X Y, et al. Efficient identity-based signcryption scheme for multiple receivers[C]//4th International Conference on Autonomic and Trusted Computing. Hong Kong, China, 2007: 13-21. DOI:10.1007/978-3-540-73547-2_4.
[4] He D B, Wang H Q, Wang L N, et al. Efficient certificateless anonymous multi-receiver encryption scheme for mobile devices[J].Soft Computing, 2017, 21(22): 6801-6810. DOI:10.1007/s00500-016-2231-x.
[5] Elkamchouchi H, Abouelseoud Y. MIDSCYK: An efficient provably secure multi-recipient identity-based signcryption scheme[C]//2009 International Conference on Networking and Media Convergence.Cairo,Egypt,2009: 70-75.DOI: 10.1109/ICNM.2009.4907192.
[6] 庞辽军, 崔静静, 李慧贤, 等. 新的基于身份的多接收者匿名签密方案[J]. 计算机学报, 2011, 34(11): 2104-2113. DOI:10.3724/SP.J.1016,2011.02104.
Pang L J, Cui J J, Li H X, et al. A new multi-receiver ID-based anonymous signcryption[J]. Chinese Journal of Computers, 2011, 34(11): 2104-2113. DOI:10.3724/SP.J.1016,2011.02104. (in Chinese)
[7] 李慧贤, 巨龙飞. 对一个匿名多接收者签密方案的安全性分析与改进[J]. 电子学报, 2015, 43(11): 2187-2193. DOI:10.3969/j.issn.0372-2112.2015.11.008.
Li H X, Ju L F. Security analysis and improvement of an anonymous multi-receiver signcryption scheme[J]. Acta Electronica Sinica, 2015, 43(11): 2187-2193. DOI:10.3969/j.issn.0372-2112.2015.11.008. (in Chinese)
[8] Yu Z M, Jing Z J, Yang H, et al. ID-based multi-receiver signcryption scheme in the standard model[J].International Journal of Internet Protocol Technology, 2017, 10(1): 4-12. DOI:10.1504/IJIPT.2017.10003840.
[9] Gao R H, Zeng J W, Deng L Z. Efficient certificateless anonymous multi-receiver encryption scheme without bilinear parings[J]. Mathematical Problems in Engineering, 2018, 2018: 1-13. DOI:10.1155/2018/1486437.
[10] 秦艳琳, 吴晓平, 胡卫. 高效的无证书多接收者匿名签密方案[J]. 通信学报, 2016, 37(6): 129-136. DOI:10.11959/j.issn.1000-436x.2016122.
Qin Y L, Wu X P, Hu W. Efficient certificateless multi-receiver anonymous signcryption scheme[J]. Journal on Communications, 2016, 37(6): 129-136. DOI:10.11959/j.issn.1000-436x.2016122. (in Chinese)
[11] 周彦伟, 杨波, 王青龙. 基于身份的多接收者(多消息)匿名混合签密机制[J]. 软件学报, 2018, 29(2): 442-455. DOI:10.13328/j.cnki.jos.005250.
Zhou Y W, Yang B, Wang Q L. Anonymous hybrid signcryption scheme with multi-receiver(multi-message)based on identity[J]. Journal of Software, 2018, 29(2): 442-455. DOI:10.13328/j.cnki.jos.005250. (in Chinese)
[12] 王彩芬, 姜红, 杨小东, 等. 基于离散对数的多消息多接收者混合签密方案[J]. 计算机工程, 2016, 42(1): 150-155. DOI: 10.3969/j.issn.1000-3428.2016.01.027.
Wang C F, Jiang H, Yang X D, et al. Multi-message and multi-receiver hybrid signcryption scheme based on discrete logarithm[J]. Computer Engineering, 2016, 42(1): 150-155. DOI:10.3969/j.issn.1000-3428.2016.01.027. (in Chinese)
[13] 李亚荣, 李虓, 葛丽霞, 等. 一个改进的多消息多接收者混合签密方案[J]. 计算机工程与应用, 2018, 54(19): 77-81. DOI: 10.3778/j.issn.1002-8331.1706-0178.
Li Y R, Li X, Ge L X, et al.Improved multi-message and multi-receiver hybrid signcryption scheme[J]. Computer Engineering and Applications, 2018, 54(19): 77-81. DOI:10.3778/j.issn.1002-8331.1706-0178. (in Chinese)
[14] Din N, Umar A I, Waheed A, et al. An efficient multi-message multi-receiver signcryption scheme with forward secrecy on elliptic curves[J]. IACR Cryptology ePrint Archive, 2015, 2015: 655.
[15] Swapna G, Vasudeva Reddy P. Efficient identity based multi-signcryption scheme with public verifiability[J]. Journal of Discrete Mathematical Sciences and Cryptography, 2014, 17(2): 181-190. DOI:10.1080/09720529.2013.867674.
[16] 周彦伟, 杨波, 张文政. 无证书多接收者多消息签密机制[J]. 计算机学报, 2017, 40(7): 1714-1724. DOI:10.11897/SP.J.1016.2017.01714. DOI: 10.11897/SP.J.1016.2017.01714.
Zhou Y W, Yang B, Zhang W Z. Multi-receiver and multi-message of certificateless signcryption scheme[J]. Chinese Journal of Computers, 2017, 40(7): 1714-1724. DOI:10.11897/SP.J.1016.2017.01714. (in Chinese)
[17] Sharmila Deva Selvi S, Sree Vivek S, Srinivasan R, et al. An efficient identity-based signcryption scheme for multiple receivers[C]//Advances in Information and Computer Security. Toyama, Japan, 2009: 71-88. DOI:10.1007/978-3-642-04846-3_6.
[18] Miao S Q, Zhang F T, Zhang L. Cryptanalysis of a certificateless multi-receiver signcryption scheme[C]//2010 International Conference on Multimedia Information Networking and Security. Nanjing, China, 2010:593-597.DOI:10.1109/MINES.2010.130.
[19] 冯登国. 可证明安全性理论与方法研究[J]. 软件学报, 2005, 16(10): 1743-1756.
  Feng D G. Research on theory and approach of provable security[J]. Journal of Software, 2005, 16(10): 1743-1756.(in Chinese)
[20] MIRACL. Multiprecision integer and rational arithmetic C/C++library[EB/OL].(2004-03-06)[2019-10-03].http://indigo.ie/mscott/.
[21] Chen L, Cheng Z, Smart N P. Identity-based key agreement protocols from pairings[J].International Journal of Information Security, 2007, 6(4): 213-241. DOI:10.1007/s10207-006-0011-9.

备注/Memo

备注/Memo:
收稿日期: 2019-09-06.
作者简介: 方光伟(1974—),男,副教授,fanggw@263.net.
基金项目: 国家自然科学基金资助项目( 61662083).
引用本文: 方光伟,曹玖新.可证安全的无证书多消息同步广播签密方案[J].东南大学学报(自然科学版),2020,50(4):728-740. DOI:10.3969/j.issn.1001-0505.2020.04.018.
更新日期/Last Update: 2020-07-20