参考文献/References:
[1] Chiu K Y, Lin S F. Lane detection using color-based segmentation[C]//IEEE Intelligent Vehicles Symposium. Las Vegas, USA, 2005: 706-711. DOI:10.1109/IVS.2005.1505186.
[2] Guo Y T, Zhang Y J, Liu S, et al. Robust and real-time lane marking detection for embedded system[J]. Lecture Notes in Computer Science, 2015: 223-235.DOI:10.1007/978-3-319-21969-1_20.
[3] Liu G, Li S, Liu W. Lane detection algorithm based on local feature extraction[C]//Chinese Automation Congress. Changsha, China, 2013: 59-64. DOI:10.1109/CAC.2013.6775702.
[4] Wang Y, Teoh E K, Shen D G. Lane detection and tracking using B-snake[J]. Image and Vision Computing, 2004, 22(4): 269-280. DOI:10.1016/j.imavis.2003.10.003.
[5] John V, Liu Z, Guo C, et al. Real-time lane estimation using deep features and extra trees regression[J]. Image and Video Technology, 2015, 9431:721-733. DOI:10.1007/978-3-319-29451-3_57.
[6] He B, Ai R, Yan Y, et al. Accurate and robust lane detection based on dual-view convolutional neutral network[C]//IEEE Intelligent Vehicles Symposium. Gothenburg, Sweden, 2016: 1041-1046.
[7] Denison D G T, Mallick B K, Smith A F M. Automatic Bayesian curve fitting[J].Journal of the Royal Statistical Society: Series B(Statistical Methodology), 1998, 60(2): 333-350. DOI:10.1111/1467-9868.00128.
[8] Zheng W N, Bo P B, Liu Y, et al. Fast B-spline curve fitting by L-BFGS[J].Computer Aided Geometric Design, 2012, 29(7): 448-462. DOI:10.1016/j.cagd.2012.03.004.
[9] 权开波,贾宁,杜培寿.基于最小二乘法的曲线拟合[J].商,2015(3):296.
[10] Mallot H A, Bülthoff H H, Little J J, et al. Inverse perspective mapping simplifies optical flow computation and obstacle detection[J].Biological Cybernetics, 1991, 64(3): 177-185. DOI:10.1007/BF00201978.
[11] Aly M. Real time detection of lane markers in urban streets[J]. Computer Science, 2014, 65(8): 928-947.
[12] Guo C, Meguro J I, Kojima Y, et al. Automatic lane-level map generation for advanced driver assistance systems using low-cost sensors[C]//IEEE International Conference on Robotics and Automation. Hong Kong, China, 2014: 3975-3982. DOI:10.1109/ICRA.2014.6907436.
[13] Jeong J, Kim A. Adaptive inverse perspective mapping for lane map generation with SLAM[C]//International Conference on Ubiquitous Robots and Ambient Intelligence. Xi’an, China, 2016: 38-41. DOI:10.1109/URAI.2016.7734016.
[14] Dupourque V. A robot operating system[C]//IEEE International Conference on Robotics and Automation. Taipei, China, 2003: 342-348. DOI:10.1109/ROBOT.1984.1087185.
[15] Farahnak-Ghazani F, Baghshah M S. Multi-label classification with feature-aware implicit encoding and generalized cross-entropy loss[C]//2016 24th Iranian Conference on Electrical Engineering(ICEE). Shiraz, Iran, 2016: 1574-1579. DOI:10.1109/IranianCEE.2016.7585772.
[16] Paszke A, Chaurasia A, Kim S, et al. ENet: A deep neural network architecture for real-time semantic segmentation[EB/OL].(2016-06-07)[2020-01-10]. https://arxiv.org/abs/1606.02147.
[17] Tran T N, Drab K, Daszykowski M. Revised DBSCAN algorithm to cluster data with dense adjacent clusters[J].Chemometrics and Intelligent Laboratory Systems, 2013, 120: 92-96. DOI:10.1016/j.chemolab.2012.11.006.
[18] Pan X G, Shi J P, Luo P, et al. Spatial as deep: Spatial CNN for traffic scene understanding[EB/OL].(2017-12-17)[2020-01-10]. https://arxiv.org/abs/1712.06080.
[19] Mongkonyong P, Nuthong C, Siddhichai S, et al. Lane detection using randomized Hough transform[J].IOP Conference Series: Materials Science and Engineering, 2018, 297: 012050. DOI:10.1088/1757-899x/297/1/012050.
[20] Saad A, Liljenquist J. A multi-robot testbed for robotics programming education and research[C]//Proceedings of the 2014 ACM Southeast Regional Conference. Kennesaw, Georgia, USA, 2014: 1-4. DOI:10.1145/2638404.2675737.
相似文献/References:
[1]程旭,张毅锋,刘袁,等.基于深度特征的目标跟踪算法[J].东南大学学报(自然科学版),2017,47(1):1.[doi:10.3969/j.issn.1001-0505.2017.01.001]
Cheng Xu,Zhang Yifeng,Liu Yuan,et al.Object tracking algorithm based on deep feature[J].Journal of Southeast University (Natural Science Edition),2017,47(4):1.[doi:10.3969/j.issn.1001-0505.2017.01.001]
[2]李林超,曲栩,张健,等.基于特征级融合的高速公路异质交通流数据修复方法[J].东南大学学报(自然科学版),2018,48(5):972.[doi:10.3969/j.issn.1001-0505.2018.05.029]
Li Linchao,Qu Xu,Zhang Jian,et al.Missing value imputation method for heterogeneous traffic flow data based on feature fusion[J].Journal of Southeast University (Natural Science Edition),2018,48(4):972.[doi:10.3969/j.issn.1001-0505.2018.05.029]
[3]周正东,李剑波,辛润超,等.基于带孔U-net神经网络的肺癌危及器官并行分割方法[J].东南大学学报(自然科学版),2019,49(2):231.[doi:10.3969/j.issn.1001-0505.2019.02.005]
Zhou Zhengdong,Li Jianbo,Xin Runchao,et al.Parallel segmentation method for organs at risk in lung cancer based on dilated U-net neural network[J].Journal of Southeast University (Natural Science Edition),2019,49(4):231.[doi:10.3969/j.issn.1001-0505.2019.02.005]
[4]彭博,蔡晓禹,唐聚,等.基于改进Faster R-CNN的无人机视频车辆自动检测[J].东南大学学报(自然科学版),2019,49(6):1199.[doi:10.3969/j.issn.1001-0505.2019.06.025]
Peng Bo,Cai Xiaoyu,Tang Ju,et al.Automatic vehicle detection with UAV videos based on modified Faster R-CNN[J].Journal of Southeast University (Natural Science Edition),2019,49(4):1199.[doi:10.3969/j.issn.1001-0505.2019.06.025]