[1]陈高丰,高建明,赵亚松.再生黏土砖粉-石灰石粉-水泥胶凝材料性能研究[J].东南大学学报(自然科学版),2020,50(5):858-865.[doi:10.3969/j.issn.1001-0505.2020.05.010]
 Chen Gaofeng,Gao Jianming,Zhao Yasong.Research on properties of recycled clay brick powder-limestone powder-cement cementitious material[J].Journal of Southeast University (Natural Science Edition),2020,50(5):858-865.[doi:10.3969/j.issn.1001-0505.2020.05.010]
点击复制

再生黏土砖粉-石灰石粉-水泥胶凝材料性能研究()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第5期
页码:
858-865
栏目:
材料科学与工程
出版日期:
2020-09-20

文章信息/Info

Title:
Research on properties of recycled clay brick powder-limestone powder-cement cementitious material
作者:
陈高丰高建明赵亚松
东南大学材料科学与工程学院, 南京211189; 东南大学江苏省土木工程材料重点实验室, 南京211189
Author(s):
Chen Gaofeng Gao Jianming Zhao Yasong
School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
Jiangsu Key Laboratory of Construction Materials, Southeast University, Nanjing 211189, China
关键词:
再生黏土砖粉 石灰石粉 抗压强度 水化放热 水化产物 孔结构
Keywords:
recycled clay brick powder limestone powder compressive strength hydration heat hydration products pore structure
分类号:
TU526
DOI:
10.3969/j.issn.1001-0505.2020.05.010
摘要:
采用再生黏土砖粉和石灰石粉共同取代部分水泥制备了复合胶凝材料,通过测试复合胶凝材料的抗压强度、水化放热、水化产物种类以及孔结构演变规律来研究其性能.结果表明:黏土砖粉-石灰石粉的掺入会降低胶砂抗压强度,但胶砂试件在90 d龄期时抗压强度比得到提高,提高砖粉掺量有利于后期强度的增长;黏土砖粉-石灰石粉的掺入可以有效地降低水泥水化的放热量;随着养护龄期的增长,复掺黏土砖粉和石灰石粉的试件中生成水化碳铝酸钙;黏土砖粉-石灰石粉的掺入增大了复合胶凝材料的孔隙率,但其填充效应以及水化后期发挥活性可以优化材料后期的孔结构.
Abstract:
Composite cementitious material was prepared by replacing partial cement with recycled clay brick powder(CBP)and limestone powder(LP). Experiments were carried out to study composite cementitious material properties,such as compressive strength, heat evolution,hydration products, and pore structure evolution. Experimental results show that CBP-LP can reduce the compressive strength of the mortars but its compressive strength ratio is improved after 90 d. Increasing the amount of CBP is more conducive to the increase of the strength in the later period. The incorporation of CBP-LP can effectively reduce the hydration heat of cement. As the curing progresses, the samples mixed with CBP-LP can form calcium carboaluminate(Mc). The incorporation of CBP-LP increases the porosity of composite cementitious material, but its filling effect and activity in the later stage of hydration can optimize the pore structure.

参考文献/References:

[1] Chen M Z, Lin J T, Wu S P, et al. Utilization of recycled brick powder as alternative filler in asphalt mixture[J]. Construction and Building Materials, 2011, 25(4): 1532-1536. DOI:10.1016/j.conbuildmat.2010.08.005.
[2] 任鑫. 建筑垃圾现状与处理办法分析[J]. 四川建材, 2016, 42(4): 36-37. DOI:10.3969/j.issn.1672-4011.2016.04.018.
Ren X.Analysis of construction waste status and disposal methods [J]. Sichuan Building Materials, 2016, 42(4): 36-37. DOI:10.3969/j.issn.1672-4011.2016.04.018. (in Chinese)
[3] Liu S H, Dai R P, Cao K J, et al. The role of sintered clay brick powder during the hydration process of cement pastes[J]. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2017, 41(2): 159-165. DOI:10.1007/s40996-017-0049-0.
[4] Sutcu M, de Alptekin H, Erdogmus E, et al. Characteristics of fired clay bricks with waste marble powder addition as building materials[J]. Construction and Building Materials, 2015, 82: 1-8. DOI:10.1016/j.conbuildmat.2015.02.055.
[5] 刘荣涛. 建筑废弃黏土砖粉作活性掺合料试验研究[D]. 西安: 西安建筑科技大学, 2017.
  Liu R T. Experimental study on the construction waste clay brick powder as active admixture[D]. Xi’an: Xi’an University of Architecture and Technology, 2017.(in Chinese)
[6] Scrivener K, Martirena F, Bishnoi S, et al. Calcined clay limestone cements(LC3)[J]. Cement and Concrete Research, 2018, 114: 49-56. DOI:10.1016/j.cemconres.2017.08.017.
[7] Sánchez Berriel S, Favier A, Rosa Domínguez E, et al. Assessing the environmental and economic potential of limestone calcined clay cement in Cuba[J]. Journal of Cleaner Production, 2016, 124: 361-369. DOI:10.1016/j.jclepro.2016.02.125.
[8] Cancio Díaz Y, Sánchez Berriel S, Heierli U, et al. Limestone calcined clay cement as a low-carbon solution to meet expanding cement demand in emerging economies[J]. Development Engineering, 2017, 2: 82-91. DOI:10.1016/j.deveng.2017.06.001.
[9] Lin K L, Chen B Y, Chiou C S. Waste brick’s potential for use as a pozzolan in blended Portland cement[J]. Waste Management & Research, 2010, 28(7): 647-652. DOI:10.1177/0734242X09355853.
[10] 彭小东. 石灰石粉低熟料胶凝材料混凝土性能研究[D]. 北京: 北京建筑大学, 2018.
  Peng X D. Cementitious material with low clinker content[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2018.(in Chinese)
[11] 邵家虎, 高建明, 赵亚松. 再生黏土砖粉水泥胶凝体系的特性[J]. 东南大学学报(自然科学版), 2019, 49(2): 375-379. DOI:10.3969/j.issn.1001-0505.2019.02.025.
Shao J H, Gao J M, Zhao Y S. Characteristics of recycled clay brick powder-cement cementitious system[J].Journal of Southeast University(Natural Science Edition), 2019, 49(2): 375-379. DOI:10.3969/j.issn.1001-0505.2019.02.025. (in Chinese)
[12] 王成启, 高海浪, 田峻源. 聚羧酸高性能减水剂对水泥水化热的影响[J]. 混凝土, 2018(11): 1-4, 8. DOI:10.3969/j.issn.1002-3550.2018.11.001.
Wang C Q, Gao H L, Tian J Y. Effect of polycarboxylic acid high performance water reducing agent on cement heat of hydration[J]. Concrete, 2018(11): 1-4, 8. DOI:10.3969/j.issn.1002-3550.2018.11.001. (in Chinese)
[13] 马保国, 董荣珍, 张莉, 等. 硅酸盐水泥水化历程与初始结构形成的研究[J]. 武汉理工大学学报, 2004, 26(7): 17-19. DOI:10.3321/j.issn:1671-4431.2004.07.006.
Ma B G, Dong R Z, Zhang L,et al. Research of the initial hydration process and structure formation of Portland cement[J]. Journal of Wuhan University of Technology, 2004, 26(7): 17-19. DOI:10.3321/j.issn:1671-4431.2004.07.006. (in Chinese)
[14] Soroka I, Stern N. Calcareous fillers and the compressive strength of Portland cement[J]. Cement and Concrete Research, 1976, 6(3): 367-376. DOI:10.1016/0008-8846(76)90099-5.
[15] 袁鹏. 煅烧粘土-石灰石复合胶凝体系在硫酸盐与酸侵蚀作用下的劣化规律[D]. 南京: 东南大学, 2017.
  Yuan P. Degradation of calcined clay-limestone composites gelation system under sulfate attack and acid corrsion[D]. Nanjing: Southeast University, 2017.(in Chinese)
[16] Dhandapani Y, Santhanam M. Assessment of pore structure evolution in the limestone calcined clay cementitious system and its implications for performance[J]. Cement and Concrete Composites, 2017, 84: 36-47. DOI:10.1016/j.cemconcomp.2017.08.012.
[17] Pipilikaki P, Beazi-Katsioti M. The assessment of porosity and pore size distribution of limestone Portland cement pastes[J]. Construction and Building Materials, 2009, 23(5): 1966-1970. DOI:10.1016/j.conbuildmat.2008.08.028.
[18] Navrátilová E, Rovnaníková P. Pozzolanic properties of brick powders and their effect on the properties of modified lime mortars[J]. Construction and Building Materials, 2016, 120: 530-539. DOI:10.1016/j.conbuildmat.2016.05.062.
[19] Silva B A, Ferreira Pinto A P, Gomes A. Natural hydraulic lime versus cement for blended lime mortars for restoration works[J]. Construction and Building Materials, 2015, 94: 346-360. DOI:10.1016/j.conbuildmat.2015.06.058.
[20] Martínez-García C, González-Fonteboa B, Carro-López D, et al. Impact of mussel shell aggregates on air lime mortars. Pore structure and carbonation[J]. Journal of Cleaner Production, 2019, 215: 650-668. DOI:10.1016/j.jclepro.2019.01.121.

相似文献/References:

[1]钱春香,黄蓓,董华.集料尺寸和形状及掺合料对混凝土界面的影响[J].东南大学学报(自然科学版),2009,39(4):840.[doi:10.3969/j.issn.1001-0505.2009.04.037]
 Qian Chunxiang,Huang Bei,Dong Hua.Influence of size and shape of aggregate and mineral admixture on interface of concrete[J].Journal of Southeast University (Natural Science Edition),2009,39(5):840.[doi:10.3969/j.issn.1001-0505.2009.04.037]
[2]高礼雄,杜雪刚,孔丽娟.石灰石粉对水泥基材料抗碳硫硅钙石侵蚀破坏的定量分析[J].东南大学学报(自然科学版),2012,42(3):483.[doi:10.3969/j.issn.1001-0505.2012.03.017]
 Gao Lixiong,Du Xuegang,Kong Lijuan.Quantitative analysis of effect of limestone powder on resistance of thaumasite attack to cement-based materials[J].Journal of Southeast University (Natural Science Edition),2012,42(5):483.[doi:10.3969/j.issn.1001-0505.2012.03.017]
[3]黄伟,孙伟.石灰石粉掺量对超高性能混凝土水化演变的影响[J].东南大学学报(自然科学版),2017,47(4):751.[doi:10.3969/j.issn.1001-0505.2017.04.020]
 Huang Wei,Sun Wei.Effects of limestone addition on hydration development of ultra-high performance concrete[J].Journal of Southeast University (Natural Science Edition),2017,47(5):751.[doi:10.3969/j.issn.1001-0505.2017.04.020]
[4]邵家虎,高建明,赵亚松.再生黏土砖粉-水泥胶凝体系的特性[J].东南大学学报(自然科学版),2019,49(2):375.[doi:10.3969/j.issn.1001-0505.2019.02.025]
 Shao Jiahu,Gao Jianming,Zhao Yasong.Characteristics of recycled clay brick powder-cement cementitious system[J].Journal of Southeast University (Natural Science Edition),2019,49(5):375.[doi:10.3969/j.issn.1001-0505.2019.02.025]

备注/Memo

备注/Memo:
收稿日期: 2020-05-15.
作者简介: 陈高丰(1997—),男,硕士生;高建明(联系人),男,博士,教授,博士生导师,jmgao@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51578141)、国家重点研发计划资助项目(2016YFE0118200).
引用本文: 陈高丰,高建明,赵亚松.再生黏土砖粉-石灰石粉-水泥胶凝材料性能研究[J].东南大学学报(自然科学版),2020,50(5):858-865. DOI:10.3969/j.issn.1001-0505.2020.05.010.
更新日期/Last Update: 2020-09-20